

Available online free at www.futurejournals.org

The Future Journal of Agriculture

Print ISSN: 2687-8151 Online ISSN: 2687-8216 Future Science Association

DOI: 10.37229/fsa.fja.2021.09.16

Future J. Agric., 3 (2021) **33-41**

OPEN ACCES

EFFECT OF PLANT DENSITY ON SOME MAIZE HYBRIDS PRODUCTIVITY UNDER NEW RECLAIMED SOIL CONDITIONS AT SOUTH SINAI

Abd El-Aziz, M.A.^{1,*} and H.M. El Shahed²

¹Plant production Department, Ecology and dry agric., Desert Research center, **Egypt.** ²Maize Research Department, Field Crops Research Institute, Agricultural Research Center, **Egypt.**

*Corresponding author: <u>mahmoud502005@gmail.com</u> Received: 15 Aug. 2021 ; Accepted: 16 Sept. 2021

ABSTRACT: Two experiments were carried out during the 2020 and 2021 summer seasons at El- Tur area, South Sinai, Egypt to investigate the Response of some maize hybrids (MH) (Zea mays L.). under new reclaimed conditions on plant density (PD) Each experiment included 16 treatments which were four maize hybrids Single crosses (MH) i.e. MH₁): S.C. 162; MH₂): S.C. 168; MH₃): S.C. 176 and MH₄): S.C. 178, and four plant density (PD) treatments i.e. PD_1): 35 cm; PD_2): 30 cm; PD_3): 25 cm PD_4): 20 cm). Results showed significant differences among some maize hybrids treatments in all studied traits in both seasons. Also, results cleared that values of grain and biological yields were increased by each. The results revealed significant differences between maize hybrids for all studied characters. MH₂): S.C. 168 significantly surpassed other studied hybrids in number of rows/ Ear, number of grains/row, Ear length (cm), grain yield/ha, Biological yield/ha, Protein (%), Grain return (LE/ha), Total return (LE/ha) and Net return (LE/ha). MH₂): S.C. 178 significantly surpassed other studied hybrids in plant height (cm), Straw yield/ha and Carbohydrate (%) and S.C. 162 significantly surpassed other studied hybrids in 100-grain Weight (g) and Straw return (LE/ha) in the both seasons. Plant density (PD₄): 20 cm (62500 plant/ha) significantly surpassed other studied in plant height, number of rows/ Ear, number of grains/row, Ear length (cm), 100-grain Weight (g), grain yield/ha, Straw yield/ha, Biological yield/ha, Protein (%), Carbohydrate (%), Grain return (LE/ha), Straw return (LE/ha), Total return (LE/ha) and Net return (LE/ha) in both seasons. The highest grain yield (8.562 ton/ha in the 1st season and 8.904 ton/ha in the 2nd one produced) from maize hybrids 168 with application of plant density PD₄): 20 cm (62500 plant/ha) in both seasons. However, the economic maize grain and straw yields could be obtained from maize hybrids S.C. 162and application of plant density PD₄): 20 cm (62500 plant/ha) under El- Tur area, South Sinai of Egypt.

Key words: Maize, Plant Density, Hybrids, Productivity, Biological, Grain return.

INTRODUCTION

Maize (*Zea mays* L.) is considered one of the most important edible crops all over the world, ranking the third order after wheat and rice concerning world- cultivated area and food production. It is a newly introduced food crop in Egypt to contribute to reduce food gap, especially it can be cultivated in the newly reclaimed areas out the old valley. Many investigators found significant differences among maize hybrids in growth characteristics, yield attributes and grain yield under different edaphic and climatic conditions.

The new reclaimed soil in South Sinai is characterized by increasing salinity either in soil or in irrigated water and poor in mineral nutrients. It is well known that salinity and low fertility of the soil negatively affected the growth and yield of field crops, particularly maize under such condition.

Grain yield of maize is more affected by variations in plant density than other members of the grass family because of low tillering ability, monoecious floral organization, and the presence of a relatively short flowering period. For each production system, there is an optimum plant density that maximizes grain yield. Maize population for maximum economic grain yield varies between 30,000 to over than 90,000 plants per hectare. The optimum plant density plays a great role in increasing maize productivity (Al-Shebani, 1998). The use of lower plant densities delays canopy closure and increase light interception, leading to high grain production per plant but low grain production per unit area (Andrade et al., 1999). On the other hand, higher plant densities enhance interplant competition for assimilates, water and nutrients (Edmeades et al., 2000). High plant densities also stimulate barrenness and increase the anthesissilking interval (Sangoi et al., 2002), thereby reducing kernel number per unit area - the main yield component of maize. Alias et al. (2010) observed that Pioneer-30D55 maize hybrid surpassed Pioneer-3012 and Pioneer-3062 with respect to all agro physiological traits i.e. leaf area index and dry matter accumulation with significant variation between them. Dahmardeh (2011) reported that grain yield of maize increased with increasing plant density and the highest amount of grain yield was obtained at 100,000 plants ha-1

Therefore, to maximize maize productivity under the newly reclaimed sandy soil, it is essential to identify the promising high yielding maize hybrids and determine the optimum plant density requirements that promote plant growth and improve grain and straw yields. So, the objective of the current study was to identify the high yielding hybrids and the proper amount of plant density for maximizing maize grain yield and its attributes under the newly reclaimed sandy soil at El- Tur area, South Sinai.

MATERIALS AND METHODS

Two experiments were carried out during the 2020 and 2021 summer seasons at El- Tur area, South Sinai, Egypt to investigate the influences of some maize hybrids (MH) and plant density (PD) under new reclaimed conditions on productivity of maize hybrids (Zea mays L.). Each experiment included 16 treatments which were four amounts of some maize hybrids (MH) i.e. MH₁): S.C. 162; MH₂): S.C. 168; MH₃): S.C. 176 and MH₄): S.C. 178 and four plant density (PD) treatments i.e. PD₁): 35 cm (35714 plant/ha); PD₂): 30 cm (41666 plant/ha); PD₃): 25 cm (50000 plant/ha) and PD₄): 20 cm (62500 plant/ha). This study aimed to investigate the effect of some maize hybrids and plant density on yield and yield components of maize hybrids.

Each experiment included 16 treatments, which were arranged in a split plot design in three replications. four some maize hybrids treatments were allocated randomly in the main plots, while four plant density were distributed randomly in the sup-plots. Every sub-plot area was 42 m² (1/100 fad).

The sowing date was after the 1^{st} effective on February 15 and 16 in the first and second seasons, respectively. Where, seeds of maize hybrids at the rate of 35, 30, 25, 20 cm between the gorge in rows distanced at 80 cm apart with 10.5 m length. Each plot included 5 rows i.e. the plot area was 42 m². Harvest was carried out on June 25 for both seasons. Analysis of variance of the split plot design was computed according to **Snedecor and Cochran (1967).**

Soil properties	Values		
Clay	3.6		
Silt	8.3		
Sand	87.1		
Texture Grade	Sandy		
PH (Ext. 1:1)	7.32		
EC (Ext. 1:1), dS m ⁻¹	2.34		
Total CaCO ₃ (%)	33.2		
Total Organic Carbon (%)	0.25		
Total Organic Matter (%)	0.423		
Nitrogen (mg kg ⁻¹)	17.2		
Phosphorus (mg kg ⁻¹)	1.58		
Potassium (mg kg ⁻¹)	45.7		
Irrigation Water Analysis			
РН	6.74		
EC (dS m^{-1})	3.63		
Aminouim N (mg L ⁻¹)	5.64		
Nitrare N (mg L ⁻¹)	22.3		
Phosphorus (mg L ⁻¹)	0.08		
Potassium (mg L ⁻¹)	0.67		

Table1. Some chemical and physical properties of representative soil samplesin the experimental site before (0-30 cm depth) sowing as mean for2020 and 2021 seasons

The used water for irrigation was saline groundwater (ranged from 3000 to 3500 ppm) pumped from a local well. Supply water was the fertilization packages were added in one dose as soil application at sowing time. The used sources of mineral fertilizers of N, P and K were ammonium nitrate (33.5 % N), calcium supper phosphate (15.5 % P₂O₅) and potassium sulphate (48.5 % K₂O). Whereas, Microbin in rate of 400 gm/ seeds/ fad was used as biofertilizer mixed with seeds at sowing time. All other the recommended agricultural practices were applied as usual in maize hybrids fields under new reclaimed conditions.

Economic evaluation

1- Total gain (LE/ ha.) = Grain yield x price + straw yield x price.

2- Net return (LE/ ha.) = Total gain – costs.

3- The costs data included costs of all farm inputs, labor and farm machinery. Price of

maize grains (ton) was 4500 LE. Whereas the price of straw was (ton) = 500 LE respect.

4- **Total costs** = 16500 LE/ha.

At harvest time, ten guarded plants were taken randomly from each sub-plot to determine all yield attributes of maize hybrids, while, overall each sub-plot was used to determine grain, straw and biological yields. The collected data of the two seasons were subjected to proper statistical analysis of variance (**Snedecor & Cochran, 1967**) using M-STATC Program. Mean values were compared at P<0.05 using the Least Significant Difference (LSD) test.

RESULTS AND DISCUSSION

It is evident from the data of maize hybrids grain yield and its attributes in the two growing seasons that the data of the second season surpassed that of the first one. These results could be explained that the experimental soil of the second season exceeded that of the first season in organic matter (Table 2).

A. Maize hybrids differences

Data in Table (2) revealed significant differences between maize hybrids for all studied characters in both seasons. Plant height (cm) ranged from 208 cm (S.C. 176) to 248 cm (S.C. 162) in the first season and 212 cm (S.C. 176) to 253 cm (S.C. 162) in the second one. These results are in harmony with those obtained by Darwich (2018). number of rows/ear, varied from 11.07 (S.C. 176) to 13.97 (S.C. 168) in the first season and 11.40 (S.C. 176) to 14.39 (S.C. 168) in the second one. Number of grains/row, changed from 37.82 (S.C. 162) to 43.29 (S.C. 168) in the first season and 39.33 (S.C. 162) to 45.02 (S.C. 168) in the second season. Ear length (cm), ranged from 16.40 cm (S.C. 176) to 21.96 cm (S.C. 168) in the first season and 17.22 cm (S.C. 176) to 23.05 cm (S.C. 168) in the second season. 100-grain Weight (gm), varied from 22.90 g (S.C. 176) to 29.74 g (S.C. 178) in the first season and 23.59 g (S.C. 176) to 30.63 g (S.C. 178) in the second season. Harmony findings were observed by Mandic et al. (2015). Grain yield ton/ha significantly varied from 5.342 (S.C. 176) to 7.779 (S.C. 168) in the first season and 5.556 (S.C. 176) to 8.091 (S.C. 168) in the second season. Straw yield (ton/ha), changed from 8.789 (S.C. 176) to 9.768 (S.C. 162) in the first season and 9.031 (S.C. 176) to 10.031 (S.C. 162) in the second season. Biological yield (ton/ha) ranged from 14.131 (S.C. 176) to 17.295 (S.C. 168) in the first season and 14.587 (S.C. 176) to 17.489 (S.C. 168) in the second season. In this regard varietal differences for straw and biological yields were also documented by Seadh et al. (2014).

B. Effect of Plant density

The results in Table (2) indicated that application of Plant density increased significantly Maize plant height, number of rows/ Ear, number of grains/ row, Ear length, 100-grain Weight, grain yield, Straw yield and biological yield, in two growing seasons. Plant height (cm) ranged from 214 cm (PD₁) to 243 $cm (PD_4)$ in the first season and 218 $cm (PD_1)$ to 248 cm (PD₄) in the second one. Number of rows/ear, varied from 11.23 (PD₁) to 13.93 (PD₄) in the first season and 11.57 (PD₁) to 14.35 (PD₄) in the second one. Number of grains/row, changed from 37.56 (PD₁) to 43.07 (PD_4) in the first season and 39.06 (PD_1) to 44.80 (PD₄) in the second season. Ear length (cm), ranged from 17.67 cm (PD₁) to 20.15 cm (PD_4) in the first season and 18.55 cm (PD_1) to $21.16 \text{ cm} (PD_4)$ in the second season. 100-grain Weight (gm), varied from 25.48 g (PD₁) to 28.17 g (PD₄) in the first season and 26.24 g (PD_1) to 29.02 g (PD_4) in the second season. These results are also in harmony with those reported by Sangoi et al. (2002) and Ogunlela et al. (2005).

Grain yield ton/ha significantly varied from 5.802 (PD₁) to 7.335 (PD₄) in the first season and 6.034 (PD₁) to 7.628 (PD₄) in the second season. Straw yield (ton/ha), changed from 8.962 (PD₁) to 9.717 (PD₄) in the first season and 9.082 (PD₃) to 10.116 (PD₁) in the second season. Biological yield (ton/ha) ranged from 15.519 (PD₁) to 16.296 (PD4) in the first season and 16.099 (PD₃) to 16.724 (PD4) in the second season. These results are in harmony with those obtained by **Mohammed, Amany (1999), Maddonni** *et al.* (2006) and Dahmardeh (2011).

A. Maize hybrids differences

Data in Table (3) revealed significant differences between maize hybrids for all studied characters in both seasons. Protein (%) ranged from 7.14% (S.C. 178) to 9.90 % (S.C. 168) in the first season and 9.59 % (S.C. 178) to 11.48 % (S.C. 168) in the second one. These results are in harmony with those obtained by **Darwich (2018)**. Carbohydrate (%), varied from 52.60 % (S.C. 162) to 53.70 % (S.C. 178) in the first season and 46.81 % (S.C. 162) to 57.22 % (S.C. 178) in the second one. In this regard varietal differences for straw and biological yields were also documented by **El-Metwally** *et al* (2010).

Grain return (LE/ha), changed from 24040 (S.C. 176) to 35010 (S.C. 168) in the first season and 25003 (S.C. 176) to 36407 (S.C. 168) in the second season. Straw return (LE/ha), ranged from 4395 (S.C. 176) to 4884 (S.C. 162) in the first season and 4516 (S.C. 176) to 5016 (S.C. 162) in the second season. Total return (LE/ha), varied from 28435 (S.C. 167) to 39760 (S.C. 168) in the first season and 29518 (S.C. 176) to 41106 (S.C. 178) in the second season. Net return (LE/ha) significantly varied from 11935 (S.C. 176) to 23260 (S.C. 168) in the first season and 13018 (S.C. 176) to 24606 (S.C. 168) in the second season. Harmony findings were observed by Abd El-Aziz, et al (2018).

B. Effect of Plant density

The results in Table (3) indicated that application of Plant density increased significantly Maize plant height, number of rows/ Ear, number of grains/ row, Ear length, 100-grain Weight, grain yield, Straw yield and biological yield, in two growing seasons. Protein (%) ranged from 8.17 % (PD₁) to 8.37 % (PD₄) in the first season and 10.11 % (PD₁) to 10.30 % (PD₄) in the second one. These results are in harmony with those obtained by El-Metwally et al (2011). Carbohydrate (%), varied from 52.95 % (PD₁) to 53.32 % (PD₄) in the first season and 54.25 % (PD₁) to 54.59 % (PD₄) in the second one.

Grain return (LE/ha), changed from 26108 (PD₁) to 33006 (PD₄) in the first season and 27153 (PD₁) to 34326 (PD₄) in the second

season. Straw return (LE/ha), ranged from 4481 (PD₄) to 4859 (PD₁) in the first season and 4541 (PD₃) to 5058 (PD₁) in the second season. Total return (LE/ha), varied from 30970 (PD₁) to 37490 (PD₄) in the first season and 32211 (PD₁) to 38874 (PD₄) in the second season. Net return (LE/ha) varied from 14467 (PD₁) to 20987 (PD₄) in the first season and 15711 (PD₁) to 22374 (PD₄) in the second season. These results are also in harmony with those reported by **Sangoi** *et al.* (2002) and Ogunlela *et al.* (2005).

C. Effect of interactions

The interaction between maize hybrids (MH) and plant density (PD) under new reclaimed sandy soil had significant effect on grain, straw and biological yields in the two growing seasons as presented in Table (4). The obtained results indicated that maize hybrids were significantly affected by applying PD₄): 20 cm (62500 plant/ha).

Maize hybrids (S.C. 168) produced the highest Grain yield/ha (8.562and 8.904ton/ha) in the two seasons, respectively with the highest level of plant density (PD₄): 20 cm (62500 plant/ha). These results are in harmony with those observed by Mandic et al. (2015). Whereas the lowest Grain yield/ha (6.201in the 1st season and 6.449 ton/ha in the 2nd season) were obtained from Maize hybrids (S.C. 176) with PD₁): 35 cm (35714 plant/ha). Similar trends were also reported by Tóthné (2011). The highest Straw yield was obtained from Maize hybrids (S.C. 162) (10.070 ton/ha); in the first season and Maize hybrids (S.C. 178) (10.341ton/ha); in the second one by applying PD₁): 35 cm (35714 plant/ha). However, the lowest Straw yield/ha was attained from Maize hybrids S.C. 176 (7.894 in the 1st season and 7.921ton/ha in the 2nd season) with (PD₄): 20 cm (62500 plant/ha) in the in the two seasons. Harmony findings were observed by Amer et al. (2004) and Abd El-Aziz, et al (2017).

Main effect Maize hybrids (MH) MH1 (S.C. 162)	Uniol	Heioht(cm)		No. 01	4	No. 01		Ear	100T	100-grain	G	Grain	Sth	Straw	Biolo	Biological
Maize hybrids (MH) MH1 (S.C. 162)	TICIER		row	rows/ Ear	grai	grains/ Row	leng	length (cm)	We	Weight(g)	Vield	Yield (ton/ha)	Yield (Yield (ton/ha)	yield (yield (ton/ha)
Maize hybrids (MH) MH1 (S.C. 162)	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021
MH1 (S.C. 162)																
	248a	253a	12.05c	12.41c					25.93c			7.051b	9.768a	10.031a	16.548b	17.082b
MH ₂ (S.C. 168)	228c	232c	13.97a	14.39a			21.96a				7.779a	8.091a	9.506a	9.398a	17.295a	17.489a
MH ₃ (S.C. 176)	208d	212d	11.07d	11.40d	41.00b	42.64b	16.40d	17.22d		23.59d	5.342d		8.789b	9.031b	14.131d	14.587d
MH4 (S.C. 178)	229b	234b	13.00b	13.39b	39.07c	40.63c	17.23c	18.10c	29.74a	30.63a	6.223c	6.472c	9.340ab	9.640ab	15.563c	16.112c
F-test	**	**	**	**	**	**	**	**	**	**	**	**	*	*	**	**
Plant density (PD)																
PD1 (35 cm)	214d	218d	11.23d	11.57d	37.56d	39.06d	17.67d	18.55d	25.48d	26.24d	5.802d	6.034d	9.717a	10.116a	15.519b	16.150b
PD ₂ (30 cm)	224c	228c	12.02c	12.38c	39.25c	40.82c	18.48c	19.41c	26.45c	27.24c	6.241c	6.490c	9.431ab	9.806ab	15.672b	16.297b
PD ₃ (25 cm)	233b	237b	12.90b	13.29b	41.29b	42.94b	19.34b	20.31b	27.24b	28.05b	6.747b	7.017b	9.293ab	9.082ab	16.040a b	16.099a b
PD4(20 cm)	243a	248a	13.93a	14.35a	43.07a	44.80a	20.15a	21.16a	28.17a	29.02a	7.335a	7.628a	8.962b	9.096b	16.296a	16.724a
F-test	**	**	**	**	**	**	**	**	**	**	**	**	*	*	*	*
Maize hybrids (MH	Ē		Protein	in	Carbohydrate	vdrate	Harvest Index	Index	Grain Return	Return	Straw Return	Return	Total Return	Return	Net F	Net Return
•			(%)	_	(%)	~	(%)	~	(LE/ha)	ha)	(LE/ha)	(pa)	(ton/ha)	(ha)	ET)	(LE/ha)
			2020	2021	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021	2020	2021
Maize hybrids (MH)																
MH ₁ (S.C. 162)			7.37c		52.60c	46.81c	45.94a	44.69a	30510b	31728b	4884a	5016a	35391b	36743b	18891b	20243b
MH ₂ (S.C. 168)			9.90a		53.14b	56.61b	46.72a	46.92a	35010a	36407a	4753a	4699a	39760a	41106a	23260a	24606a
MH ₃ (S.C. 176)			8.67b	9.34b	53.14b	57.12b	45.2la	45.85a	24040d	25003d	4395b	4516b	28435d	29518d	11935d	13018d
MH4 (S.C. 178)			7.14d	9.59d	53.70a	57.22a	45.57a	46.66a	28010c	29126c	4670ab	4820ab	32676c	33946c	16176c	17446c
F-test			**	**	*	*	N.S	N.S	**	**	*	*	**	**	*	*
Plant density (PD)																
PD1 (35 cm)			8.17d	10.11d	52.95d	54.25d	46.17a	45.97a	26108d	27153	4859a	5058a	30970d	32211d	14467b	15711d
PD ₂ (30 cm)			8.24c	10.15c	53.09c	54.39c	46.29a	45.90a	28084c	29207	4716ab	4903ab	32800c	34110c	16300a	17610c
PD ₃ (25 cm)			8.30b	10.23b	53.22b	54.49b	45.59a	46.81a	30362b	31576	4647ab	4541ab	35010b	36118b	18509d	19618b
PD4(20 cm)			8.37a	10.30a	53.32a	54.59a	45.39a	45.44a	33006a	34326	4481b	4548b	37490a	38874a	20987c	22374a
			++	++	**	**	0.10	2.10	**	;;	4	+	**	**	ł	4

Future J. Agric., 3 (2021) 33-41

The highest Biological yield was obtained from Maize hybrids (S.C. 168) and PD₃): 25 cm (50000 plant/ha), (17.770 ton/ha); in the first season and Maize hybrids (S.C. 162) (18.175 ton/ha); in the second one by applying PD₄): 20 cm (62500 plant/ha). However, the lowest Biological yield/ha was attained from Maize hybrids S.C. 176 (13.960 ton/ha) with PD₂): 30 cm (41666 plant/ha) in the first season and (14.370 ton/ha), in the second one with (PD₄): 20 cm (62500 plant/ha). Similar trends were also reported by **Iptas and Acar (2006) and Sangoi et al. (2002).**

The interaction between maize hybrids (MH) and plant density (PD) under new reclaimed sandy soil had significant effect on Grain return (LE/ha), Straw return (LE/ha) and Net return (LE/ha) in the two growing seasons as presented in Table (5). The obtained results indicated that maize hybrids were significantly affected Grain return (LE/ha) by applying PD₄): 20 cm (62500 plant/ha). Maize hybrids (S.C. 168) produced the highest grain yield (38528 and 40068 LE/ha) in the two seasons, respectively with the highest level of plant density (PD₄): 20 cm (62500 plant/ha). These results are in harmony with those observed by Mandic et al. (2015). Whereas the lowest Grain return (LE/ha) (20797 in the 1st season and 21629 LE/ha in the 2nd season) were obtained from Maize hybrids (S.C. 176) with PD₁): 35 cm (35714 plant/ha). Harmony findings were observed by Abd El-Aziz et al. (2017).

 Table 4. Grain, straw and biological yields of maize as affected by the interaction between maize hybrids and plant density during the both seasons of the study

Maize hybrids		Grain yield		Straw yield		Biolog. yield	
	Plant		/ha)		n/ha)		n/ha)
	density	2020	2021	2020	2021	2020	2021
	PD ₁	6.084i	6.327i	9.796abc	10.202abc	15.880ef	16.530ef
	PD ₂	6.457g	6.716g	9.763abc	10.304abc	16.220df	17.020df
MH ₁ (S.C. 162)	PD ₃	6.992e	7.272e	9.448cd	9.331cd	16.440cd	16.602cd
	PD ₄	7.584c	7.887c	10.070a	10.288a	17.650a	18.175a
	PD_1	7.032d	7.313d	9.715abc	9.834abc	16.750bc	17.148bc
	PD_2	7.584c	7.887c	9.496bcd	9.643bcd	17.080b	17.530b
MH ₂ (S.C. 168)	PD ₃	7.940b	8.258b	9.830ab	9.462ab	17.770a	17.720a
	PD4	8.562a	8.904a	8.981ef	8.653ef	17.540a	17.557a
	PD ₁	4.622n	4.807n	9.596bc	10.086bc	14.220i	14.892i
	PD_2	4.968m	5.166m	8.995ef	9.546ef	13.960i	14.713i
MH ₃ (S.C. 176)	PD ₃	5.580k	5.803k	8.671f	8.572f	14.250i	14.375i
	PD ₄	6.201h	6.449h	7.894g	7.921g	14.100i	14.370i
	PD_1	5.470 l	5.6891	9.760abc	10.341abc	15.230h	16.030h
	PD_2	5.955j	6.193j	9.470cd	9.732cd	15.430gh	15.925gh
MH4 (S.C. 178)	PD ₃	6.477f	6.736f	9.223de	8.964de	15.700fg	15.700fg
	PD ₄	6.992e	7.272e	8.906ef	9.523ef	15.900ef	16.795ef
	F-test	*	*	*	*	*	*

** and *: Significant at 0.01 and 0.05 levels of probability, respectively. values N.S: not significant.

The highest Straw return (LE/ha) was obtained from Maize hybrids (S.C. 162) (5033 LE/ha); with PD₄): 20 cm (62500 plant/ha) in the first season and (5152 LE/ha); in the second one by applying PD₂): 30 cm (41666 plant/ha). However, the lowest Straw return (LE/ha) was attained from Maize hybrids S.C. 176 (3947 LE/ha) with PD₄): 20 cm (62500 plant/ha) in

the first season and (3961 LE/ha), in the second one with PD_4): 20 cm (62500 plant/ha).

The highest Net return (LE/ha) Maize hybrids (S.C. 168) produced the highest grain yield (26518 and 27895 LE/ha) in the two seasons, respectively with the highest level of plant density PD₄): 20 cm (62500 plant/ha). These results are in harmony with those

observed by **Mandic** *et al.* (2015). Whereas the lowest Net return (LE/ha) (9095 in the 1st season and 10172 LE/ha in the 2nd season) were obtained from Maize hybrids (S.C. 176) with

PD₁): 35 cm (35714 plant/ha). Harmony findings were observed by **Abd El-Aziz**, *et al.* (2017).

Table 5. Partial budget analysis as affected b	y Plant density during the 2020 and 2021 seasons
Tuble 5.1 al that budget analysis as affected b	y i funt density during the 2020 and 2021 seasons

Maize hybrids	Dlant	Gr	Grain		Straw		Net	
	Plant	Return	(LE/ha)	Return	ı (LE/ha)	Return	n (LE/ha)	
	density	2020	2021	2020	2021	2020	2021	
MH ₁ (S.C. 162)	PD ₁	27379i	28474i	4898abc	5101abc	15777ј	17075j	
	PD ₂	29058g	30221g	4882abc	5152abc	17439h	18873h	
	PD ₃	31464e	32723e	4724cd	4665cd	19688f	20888f	
	PD ₄	34128c	35492c	5033a	5144a	22661c	24137c	
	PD ₁	31644d	32910d	4858abc	4918abc	20002e	21327e	
	PD ₂	34128c	35493c	4748bcd	4822cd	22376d	23814d	
MH ₂ (S.C. 168)	PD ₃	35729b	37159b	4915ab	4731ab	24144b	25390b	
	PD ₄	38528a	40068a	4491ef	4327ef	26518a	27895a	
	PD ₁	20797n	21629n	4798bc	5043bc	90950	101720	
MH ₃ (S.C. 176)	PD ₂	22354m	23247m	4498ef	4773ef	10351n	11520n	
	PD ₃	25108k	26112k	4335f	4286f	12943m	13899m	
	PD ₄	27905h	29022h	3947g	3961g	15352k	16482k	
	PD_1	24614l	255991	4880abc	5171abc	12994m	14270m	
	PD ₂	26798j	27868j	4735cd	4866cd	150331	16235l	
MH ₄ (S.C. 178)	PD ₃	29148f	30312f	4612de	4482de	17259i	18294i	
	PD ₄	31464e	32723e	4453ef	4762ef	19417g	20985g	
	F-test	**	**	*	*	**	**	

** and * : Significant at 0.01 and 0.05 levels of probability, respectively. values N.S: not significant.

CONCLUSION

It could be concluded that Maize hybrids (S.C. 168) and application of PD₄): 20 cm (62500 plant/ha) produced the most economical Maize hybrids production under the new reclaimed sandy soil in at El- Tur area, South Sinai, Egypt.

REFERENCES

Al-shebani, Y.A.A. (1998). Some agronomic studies on maize (*Zea mays* L.). M.Sc. Thesis. Fac. Agric. Cairo Univ. Egypt.

Abd El-Aziz, M. A; Salem, A.H.; Aly, R.M. and Abd El-Maaboud, M.Sh. (2018). Grain Quality and Protein Yield of Three Bread Wheat Cultivars as Affected by Some Humic Acid and Compost Fertilizer Treatments under Newly Sandy Soil Conditions. Zagazig J. Agric. Res., 45(3): 809-819.

Abd El-Aziz, M. A; Salem, A.H.; Aly, R.M. and Abd El-Maaboud, M.Sh. (2017). The

Role of Humic Acid and Compost in Maximizing Productivity of Some Wheat Cultivars Grown under Newly Reclaimed Sandy Soil at North Sinai, Egypt. Egypt. J. of Appl. Sci., 32(9): 97-211.

Amer, E. A.; EL-Shenawy, A. A.; Mosa, H. E. and Motawei, A. A. (2004). Effect of spacing between rows and hills and number of plants per hills on growth, yield and its components of six maize crosses. J. Agric. Res. Tanta Univ., 30(3): 601-615.

Andrade, F. H.; Vega, C.; Uhart, S.; Cirilo, A.; Canterro, M. and Valentnuz, O. (1999). Kernel number determination in maize. Crop Sci., 39: 453 - 459.

Alias, M. A.; Bukhsh, H. A.; Ahmad, R.; Malik, A. U.; Hussain, S. and Ishaque, M. (2010). Agro physiological traits of three maize hybrids as influenced by varying plant density. J. Animal and plant Sci., 20(1): 34 - 39. **Darwich, M. M. B (2018).** Evaluation of Some Yellow Maize Hybrids for Grain and Forage Yields Productivity. J. Plant Production, 9(12): 1129 – 1133.

Dahmardeh, M. (2011). Effect of plant density and nitrogen rate on photosynthesis active radiation absorption and maize yield. Iran. American J. Pl. Phys., 6 (1): 44-49.

Maddonni, G. A.; Otegui, M. E. and Cirilo, A. G. (2006). Plant population density, row spacing, and hybrid effects on maize canopy architecture and light attenuation. Field Crops Res., 71: 183 – 191.

Mohammed, Amany, M. (1999). Evaluation of some yellow hybrids maize (*Zea mays* L.) under different levels of plant densities and nitrogen fertilization. M. Sc. Thesis, Fac. Agric., Kafer El-Sheikh, Tanta Univ., Egypt.

Mandic, V.; Krnjaja. V.; Bijelić, Z.; Tomić, Z.; Simić, A.; Stanojković, A.; Petričević, M. and CaroPetrović, V. (2015). The effect of crop density on yield of forage maize. Biotech. In Animal Husbandry, 31(4): 567-575.

Ogunlela, V. B.; Amoruwa, G. M. and Olongunde, O. O. (2005). Growth, yield components and micronutrient nutrition of field maize grown as affected by nitrogen fertilization and plant density. Nutr. Cyc. in Agroeco, 17: 385 1314.

El-Metwally, E. A.; El-Deeb, A. A.; Safina, S. A. and Rabbani, B. G. (2011). behavior of some maize hybrids cultivated with different plant densities. J. Plant Production, 2 (3): 479 – 490.

El-Metwally, E. A.; Moselhy, N. M. M.; Esmaeland, E. A. and Abd El-Aziz, M. A. (2010). Effect of bio and mineral fertilization on naked barley under Rainfed and supplemental irrigation conditions at Matrouh area, Egypt. J.plant Prod. Mansoura Univ., 1(10): 1385-1397.

Edmeades, G. O.; Bolanose, J. A.; Elings, A.; Ribaut, J. M. and Banziger, M., (2000). The role and regulation of the anthesissilking interval in maize. In: westgate, M. E., K. J. Boote (Eds.), physiology and modeling kernel set in maize. CSSA, Madison, WI. pp. 43-73.

Iptas, S. and Acar, A. A. (2006). Effects of hybrid and row spacing on maize forage yield and quality. Plant Soil Environ., 52(11): 515-522.

Tóthné, Z. Z. (2011). Improving the chemical quality and digestibility of silage maize hybrids. Ph.D. Thesis, SzentIstván Univ., Inst. of Genetics and Biotech., Martonvásár, pp: 1-21.

Sangoi, L.; Graceiette, M. A.; Rampazzo, C. and Bianchetti, P. (2002). Response of Brazilian maize hybrids from different areas to change in plant density. Field Crops Res., 79: 39 – 51.

Seadh, S. E.; Badawi, M. A.; Attia, A. N. and AlDulaimi, O. I. M. (2014). Impact of irrigation treatments and foliar application with green miracle as antitransparent material on productivity of some maize hybrids. World Res. J. Agron., 3 (2): 83-88.

Snedecor, G. W. and Cochran, W. G. (1967). Statistical Methods, 6th Edition The Iowa State College, Ames Iowa, U. S. A.