

Article

Pre-harvest salicylic Acid Application and Different Packaging Material to Alleviate Chilling Injury of Sweet Basil (*Ocimum basilicum* L.) during Cold Storage

Sarah N. Abd El-Khalek^{1,*}, Mohamed Abd El-Kawy Abd El-Sayed¹ and Entsar N. Mohamed²

Future Science Association

Available online free at www.futurejournals.org

Print ISSN: 2767-178X

Online ISSN: 2767-181X

DOI: 10.37229/fsa.fjas.2023.12.22

Received: 27 October 2023 Accepted: 15 December 2023 Published: 22 December 2023

Publisher's Note: FA stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses /by/4.0/). ¹Medicinal and Aromatic Plants Res. Dept., Horticulture Research Institute, Agricultural Research Center, Giza, **Egypt**.

²Food Engineering and Packaging Department, Food Technology Research Institute, Agricultural Research Center, Giza, **Egypt.**

*Corresponding author: sarahnagy@arc.sci.eg

Abstract: Fresh sweet basil has a very short storage period after harvesting. In this context we carried out to determine the effects of salicylic acid as preharvest treatment at different concentrations (0, 3, and 5mM), different packaging materials (low-density polyethylene and polypropylene) application combined with different temperatures (5° C, 10° C and ambient temperature) and stored for 0, 2, 4, 6, 8, and 10 days for chilling injury alleviation and prolonging the shelf life of sweet basil (Ocimum basilicum, L) fresh herb. This study conducted in the years 2021-2022. The results indicated that the lowest significant fresh weight loss % and the highest values of total chlorophyll, antioxidant activity, essential oil %, and its constituents were recorded for polypropylene bags. On the other hand, fresh herb stored at 10°C gave the highest total chlorophyll, antioxidant activity and essential oil %. Moreover, 5 mM SA application was the most effective in alleviating chilling injury (CI) in the basil. At the end of storage (day 10), the CI score of 5 mM SA-treated sweet basil and stored at 10 ° C or 5 ° C in polypropylene bags was significantly lower than that of low-density polyethylene which it was lower than 2.5 (acceptable score). This may be due to the induction of defense a mechanism system by SA. So they may be considered polypropylene bags the most suitable packaging material to keep sweet basil fresh herb until 10 days under 5° C or 10°C in both seasons.

Key words: Sweet basil, salicylic acid, pre-harvest, packaging.

1. Introduction

Sweet basil (*Ocimum basilicum* L.) is one of the most well-liked aromatic herbs, which is grown all over the world. (**Matthews** *et al.*, **2018**). Strong antibacterial and antioxidant properties of basil essential oil have also been demonstrated, suggesting possible applications as a natural preservative. (**Takwa** *et al.*, **2018**). Due to the growing demand for fresh, aromatic herbs, basil leaves are now an important competitor in the world market for food products. The transition toward healthier and better-tasting food preparations has led to a huge increase in demand for fresh basil over time. (Curutchet *et al.*, 2014).

Handling, storage, and transportation all have a significant impact on the shelf life, flavor, and ultimately the marketability of commercial herb output.

Harvested and processed basil is often shipped in refrigerated trucks with other herbs as most herbs are not chilling sensitive and low temperatures minimize disease and decay. While bulk shipment saves money by not requiring individual shipping arrangements, fresh-cut basil quality and marketability may be degraded. Growers can at least recognize when CI occurs before harvest or during cleaning, sorting, and grading at the farm, but they cannot control for injury that develops after the harvest leaves the farm. Unfavorable shipping or storage conditions result in the delivery of poor-quality produce, thus impacting future sales and markets and incurring a great economic loss. (Brindisi *et al.*, 2021)

Sweet basil being of tropical origin, is susceptible to chilling injury (CI) during low-temperature storage and transport. The most prevalent damage occurring in sweet basil exposed to temperatures below 12 °C is brown spots of the interveinal areas of the leaf followed by the development of black necrosis and leaf abscission. Some other visual symptoms that might occur are loss of glossy appearance, wilting, and epinasty (**Begum** *et al.*, **2023**).

Following harvest, a variety of factors, such as storage conditions and packaging material, may influence the speed which basil leaves deteriorate. Most fresh culinary herbs retain their quality best at cold temperatures (**Cantwell and Reid**, **2002**). Since CI was recognized and reported in the literature, there has not been a release of commercial sweet basils that are chilling tolerant (**Dudai** *et al.*, **2020**).

It has recently been demonstrated that salicylic acid, a plant growth regulator and safe chemical used to preserve postharvest quality, plays a significant role in the induction of bioactive substances such antioxidants and antioxidant enzymes. (**Supapvanich and Promyou, 2013**). Salicylic acid can reduce lipid peroxidation and get rid of ROS. In addition to stimulating plants' stress tolerance mechanism, salicylic acid-induced bioactive compounds have positive effects on human health. (**Supapvanich et al., 2015**). On the other hand, little information regarding the effects of applying salicylic acid prior to harvest on the postharvest quality and bioactive components of sweet basil have been published. Salicylic acid improves fruit quality and storability, and has a toxicity effect on fungi during storage (**Barakat et al., 2015**). Packaging modifies the composition of the air to give the best environment for preserving produce quality. A modified atmosphere formed by packing prolongs the storage life of produce by reducing respiration rate, enhancing moisture retention, and limiting physiological deterioration. (**Mangaraj et al., 2009**).

So far, little research has been done to extend the storage life of fresh basil leaves. In order to formulate storage conditions for the enhancement of the shelf life of basil leaves, it is essential to understand the biochemical basis of quality maintenance of leaves during storage under different conditions.

Thus the purpose of this study was to investigate the methods that reduce damage to sweet basil caused by low temperatures during storage (Chilling injury), through salicylic acid as pre-harvest treatment and types of packaging material.

2. Materials and Methods

The present study aimed to investigate the effects of pre-harvest treatments with different concentrations of salicylic acid, packaging materials (low-density polyethylene and polypropylene) combined with different storage temperatures 5, 10 °C (90–95% humidity), and ambient temperature 28 \pm 5°C (60% humidity) on the storability and marketing visual quality of sweet basil fresh herb. The field experiment was carried out at Horticulture Research Institute and Food Technology Research Institute, ARC, Giza, during the two successive seasons 2021 and 2022.

Sweet basil seeds were obtained from the Farm of Medicinal and Aromatic Plants Research Department, El-Kanater El-khairia, El-Kalubia Governorate, Egypt, and sown on the 15th and 17th February 2021 and 2022, respectively, in seed trays. After 45 days from sowing, when the seedlings reached 20 cm height with 6-8 leaves, they were transplanted to the prepared plots in the experimental

field. All plants received common agricultural practices, including fertilization, regular irrigation, and manual weed control, were done according to the recommendation of the Egyptian Ministry of Agriculture.

After two months of seedlings cultivation (during flowering stage), plants were sprayed with salicylic acid (SA) solution 0, 3, or 5 mM. Sweet basil was harvested after 24 h from SA spraying in the morning (7.30 am). Plants were harvested by cutting the herb 10 cm above the soil surface without bruising or injuring the leaves and stems on June 15^{th} in the two seasons.

Treatments:

- Pre-harvest salicylic acid (SA): Control (without salicylic acid), Salicylic acid at 3mM and 5mM.
- Packaging Material: low-density Polyethylene (PE) and Polypropylene (PP)
- Storage temperature: 5 °C,10 °C and ambient temperature
- Storage time: 2, 4, 6, 8 and 10 days.

Two commercially available polymeric film bags were used as packaging materials. The investigated polymer materials were low-density polyethylene (LDPE) 20×30 cm of 40μ m thickness and polypropylene (BOPP Biaxial oriented) 20×30 cm of 24μ m thickness.

The average oxygen transmission rates (OTR) of the PE and PP films are 4000 cc/ m^2 /day and 1000 CC/m²/day, respectively, while the water vapor transmission rate (WVTR) of films is LDPE 20 gm/m²/day and 70 gm/m²/day respectively.

Sweet basil plant packaging was heat sealed and stored; each package contained 50 gm as one replicate. The packages were divided into three groups; placed inside refrigerators and stored at two different temperatures 5 and 10 $^{\circ}$ C) at 95 % RH and ambient temperature of 28 ± 5 $^{\circ}$ C (60% humidity) for ten days.

Samples were taken at random from 3 replicates of each treatment and examined immediately after harvest as well as every 2 days intervals for the following properties:

1- Weight loss percentage was estimated according to the following equation:

weight loss
$$\% = \frac{\text{initial weight of herb} - \text{weight of herb at sampling date}}{\text{initial weight of herbs}} \times 100$$

2- Headspace Gas Analysis

The levels of O_2 and CO_2 were determined before chemical, and physical analysis to verify packaging atmospheres for each group. Before opening bags, headspace gas analysis was measured by using an oxygen analyzer [Witt Oxybaby headspace gas analyzer (O_2/CO_2), model PCO₂ Plus/100, Gas Data Ltd.], Ethylene concentration was determined by using an Ethylene analyzer (F-950 three Gas Analyzer)

3- Chlorophyll content measurement:

Chlorophyll content was assayed according to the method of Ferruzzi and Schwartz (2001).

4-Antioxidant capacity assay and total phenolic content: Folin-Ciocalteu spectrophotometric method was selected to determine the total phenolic content as described by **Cefola** *et al.* (2009). The antioxidant activity was determined using the DPPH (2,2-diphenyl-1-picrylhydrazyl) spectrophotometric method as described by **Shan** *et al.* (2005).

5- Change of leave color during storage

The color of basil leaves was measured using a hand-held tristimulus reflectance colorimeter (model CR-400, Minolta Corp., Newburgh, NY, USA). The measurements were performed on leave surfaces before storage and also every sampling date during the storage period (0, 2, 4, 6, 8, and 10

days). CIE-L* (Lightness), a* (-greenness), and (Hue angle) H values according to Shehata et al. (2020).

6 - Chilling injury score measurement

The following scale was used to measure visual damage caused by chilling injury, or the browning of leaves (**Wongsheree** *et al.*, **2009**): (1) no damage; (2) a few dark spots; (3) less than 30% of the entire leaf area; (4) between 30% and 50% of the leaf area; and (5) more than 50% of the leaf area brown.

7 - Essential oil content was carried out according to the method of ASTA (1985).

8- Gas Liquid Chromatography (GLC) The volatile oil obtained from the fresh leaves was analyzed using Ds Chrome 6200 Gas Chromatography apparatus according to (Adams, 2007).

9- Statistical analysis: completely randomized design with three repetitions was used to automate the collected data in the factorial experiment. The factorial treatments were the combinations among four factors salicylic acid, package type, storage temperature, and storage time as described by **Gomez and Gomez (1984).** Statistical analysis was done by using the computer program MS-TATEC software version (4) using the L.S.D. test at 0.05.

The physical and chemical characteristics of the soil of the experimental field were determined according to **Jackson (1973)** and are shown in Table (1).

Physical properties of the experimental	soil
Clay%	38.51
Silt%	27.74
Fine sand%	31.42
Coarse sand%	2.33
Soil type	Clay sand
Chemical properties of the experimental	
soil	
pH	7.32
N_2 (ppm)	27.14
P_2O_5 (ppm)	102
K ₂ O (ppm)	166
Zn (ppm)	4.29
Fe (ppm)	1.89
B (ppm)	1.65
Mn (ppm)	0.52
Cu (ppm)	0.31

Table (1). Physical and chemical properties of the experimental soil

3. Results and Discussion

3.1. Fresh weight loss %

As the result shown in Table 2, the percentage of weight loss for the harvested and treated sweet basil increased considerably and consistently with prolonging the storage period. This may be due to respiration, transpiration and other senescence related metabolic process during storage). These results are in agreement with (Masoud, 2011).

Pre-harvest SA treatments had a significant effect on the loss of fresh weight during cold storage, all concentrations of SA reduced fresh weight loss compared to the control (without SA), SA at a rate of 5 mM gave the lowest values of weight loss with mean values 1.16%, and 1.27% in both seasons.

Herbs respiration, transpiration, and metabolic processes are mainly responsible for controlling weight loss. According to reports, SA closes stomata, which reduces herbs, and fruits weight loss and

suppresses respiration rate. (Zhang and Zhang, 2004). The same as peach fruits of the cultivar "Delicia" that were treated with SA showed less weight loss than the control. (Abbasi *et al.*, 2010). Also, **Supapvanich**, *et al.*, (2015) found that during storage, SA treatment reduced weight loss of lemon basil

Concerning the effect of packaging materials, data revealed that there were significant differences among the treatments during storage however, basil fresh herb packed in polypropylene had the lowest value of weight loss percentages 1.19 % and 1.40% as compared to those packed in polyethylene 1.58% and 1.79% during storage in the two seasons, respectively. This effect might be attributed to the low rate of respiration under polypropylene film since relative humidity was high inside the package, which diminished the weight loss during storage. Numerous studies have shown that film packaging can against water loss and can preserve the quality of perishable commodities (Lee *et al.*, 2008).

The polypropylene film used in this investigation did not have any holes, which prevented the sample from evaporating as normal. In contrast, the other package type (PE, polyethylene) demonstrated a considerable amount of water evaporation and higher evaporation. One of the main factors affecting the freshness and general quality of the products is maintaining the water content of fresh samples, particularly of leafy vegetables. Similar to **Lee (2008)**, our results showed that using the right film to package sweet basil helps it stay fresher longer by minimizing water evaporation during storage and transportation before it reaches consumers.

Physiological loss in weight of basil leaves increased significantly during storage under all conditions. However, loss was quite lower at 5 0 C (1.18% and 1.25 in both seasons) as compared to basil herb stored at 10 0 C (1.42% and 1.47%) or under ambient conditions (1.99% and 2.23%), which similar results were noticed in both seasons and could be attributed to the slowdown of physiological process such as respiration and transpiration that occur at low temperatures. These results agreed with (Masoud, 2011).

The interaction between pre-harvest treatments, packaging materials, storage temperatures, and storage period was significant in the two seasons. After 10 days of storage, sweet basil plants treated with 5mM of SA and packed in a polypropylene bag and stored at 5 or 10 °C had the lowest value of weight loss percentage 0.92% and 1.19% in the first season and 1.34% and 1.63% in the second season respectively, while the highest weight loss percentages 3.81% and 4.01% were obtained from plant packed in polyethylene bag and stored under ambient conditions after 4 days in two seasons.

3.2. Gas composition inside the packages

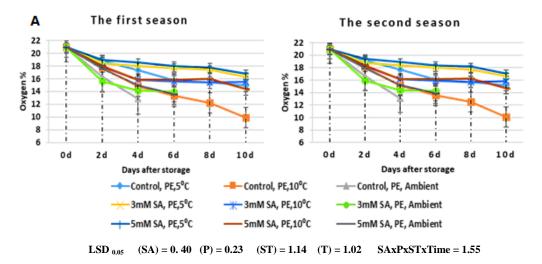
Data in Figs (1 and 2) showed that in the two seasons; there was a significant decrease in O_2 % and an increase of CO_2 % during the storage period as a result of its respiration. Similar results were obtained by **Julio and Cantwell**, (1997) who attributed that to the consumption of O_2 and production of CO_2 from parsley plants during their respiration process.

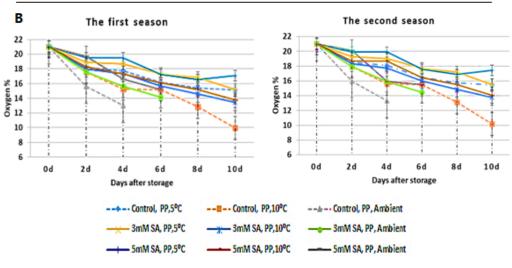
Concerning the effect of storage temperature, the data revealed that, the highest mean values of O_2 (17.52% and 17.41%) and lowest mean values of CO_2 during storage had been measured inside the packages stored at 5 °C. These results were similar to that reported by **Julio and Cantwell**, (1997). In contrast, decreased values of oxygen and increased values of carbon dioxide during storage had been measured inside the packages stored at 10°C and ambient temperature.

Oxygen concentration decreased whereas carbon dioxide concentration increased in all types of bags Fig. (1 and 2). The PE bag, which has the highest oxygen transmission rates, showed the lowest atmosphere modification. Oxygen and carbon dioxide concentration in the package continued to change until the equilibrium point occurred. The atmospheric compositions at the equilibrium point in the PE bag found oxygen concentration with mean of 16.07% and16.31% in the first and the second seasons, respectively. Carbon dioxide concentrations were found at 2.94% and 2.71% in the first and the second seasons, respectively. This is due to the high permeability to oxygen and carbon dioxide and low permeability to water vapor, which causes condensation of water vapor and damage to the stored basil plants. On the other hand, The PP bag which has the highest oxygen transmission rates, showed the

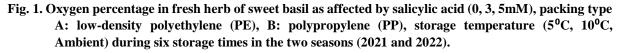
lowest atmosphere modification. On the other hand, PP bags were found oxygen concentrations with mean values of 16.63% and 17% in the first and the second seasons, respectively. While carbon dioxide concentrations were found at 2.66%, and 2.33%, in the first and the second seasons, respectively. This is due to the decreased permeability to oxygen and carbon dioxide and increased permeability to water vapor in polypropylene bags.

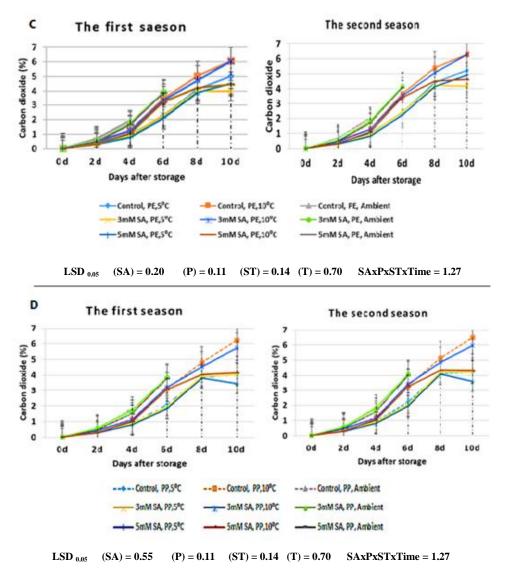
Packing Type (P)	Storage				atments						
		Storage time (T)									
	temp. (ST)	0	2	4	6	8	10	Mean SA			
PE	5	0	1.1	1.21	2.33	3.11	3.23				
	10	0	1.28	1.45	2.82	3.68	4.11				
	Ambient	0	2.52	3.81	n. d.	n. d.	n. d.	1.88			
PP	5	0	0.82	0.93	2.08	2.77	3.12				
	10	0	0.9	0.96	2.43	3.4	3.86				
	Ambient	0	1.13	3.55	n. d.	n. d.	n. d.				
PE	5	0	1.03	1.16	1.24	2.35	2.85				
	10	0	1.17	1.26		2.86					
		0						1.55			
РР								1.00			
DF		-									
112	_	-									
		-						1.1/			
מת		-						1.16			
PP											
		-									
	Ambient										
DE (Dal	(athylana)		1.05	1.80	1./ð	1.03	2.44				
rr (roly)											
LCD	Ampient		$(\mathbf{D}) = 0.1$	19 (ST) - (0.145 (T) $-($	205 54-	DrefTreTime	- 0 470			
LSD 0.05		(3A) = 0.14	~ ~ ~		(1) = (1)	1.205 SAX	r x51x1ille	- 0.470			
PE	5	0			2.65	3.35	3.61				
		-									
	Ambient	0	2.85	4.01	n. d.	n. d.	n. d.	2.01			
PP	5	0	0.68	0.82	1.18	2.27	3.42				
	10	0	0.74	0.84	2.23	3.37	4.19				
	Ambient	0	2.51	3.78	n. d.	n. d.	n. d.				
PE	5	0	0.86	1.02	2.36	2.03	2.17				
	10	0	0.97	1.41	1.57	2.29	2.74				
	Ambient	0	2.34	3.66	4.32	n. d.	n. d.	1.66			
PP											
		-									
DE		-									
PE											
								1.07			
DD								1.27			
r r											
	7 indicin										
PE (Polveth	vlene)		1.40	1.10							
								 I			
5°C								·			
					1						
	PE PP PE PP PP PP PP PE PP PE PP PE PE P	PP 5 10 Ambient PE 5 10 Ambient PP 5 10 Ambient PP 5 10 Ambient PE 5 10 Ambient PE 5 10 Ambient PP 5 10 Ambient PP (Polyetylene) 5 °C 10 °C Ambient PE (Polyetylene) 5 °C 10 °C Ambient PE 5 10 °C Ambient PP 5 10 Ambient PP 5 10 Ambient PP 5 10 Ambient PE 5 10 Ambient PP 5 10 Ambient PP 5 10 Ambient PP 5	PP50100Ambient0PE50100Ambient0PP50100Ambient0PE50100Ambient0PE50100Ambient0PP50100Ambient0PP50100Ambient0PE (Polyethylene)1.195 °C1.1810 °C1.42Ambient1.99LSD 0.050PE50100Ambient0PP50100Ambient0PP50100Ambient0PP50100Ambient0PP50100Ambient0PP50100Ambient0PP50100Ambient0PP50100Ambient0PP (Polypropylene)1.405 °C1.2510 °C1.47	PP500.821000.9Ambient01.13PE501.03I001.17Ambient01.98PP500.561000.74Ambient00.92PE500.541000.63Ambient01.42PP500.381000.47Ambient00.9PE500.381000.47Ambient00.90.001.00PE (Polyethylene)1.58PP (Polyproylene)1.195 °C1.1810 °C1.42The SecondPE500.010.33PE500.021.811002.34PP500.030.97Ambient02.34PP500.010.39PE501000.32PE500.001.25PE (Polyethylene)1.79PP (Polypropylene)1.401000.321000.32PE (Polyethylene)1.79PP (Polypropylene)1.401000.32PE (Polyethylene) <td>PP 5 0 0.82 0.93 10 0 0.9 0.96 Ambient 0 1.13 3.55 PE 5 0 1.03 1.16 10 0 1.17 1.26 Ambient 0 1.98 3.73 PP 5 0 0.56 0.66 10 0 0.74 0.89 Ambient 0 0.92 3.43 PE 5 0 0.54 0.8 10 0 0.63 0.96 Ambient 0 1.42 3.67 PP 5 0 0.38 0.42 10 0 0.47 0.59 Ambient 0 0.99 2.87 PP (Polypropylene) 1.13 1.38 PP (Polypropylene) 1.19 LSD 0.05 (SA) = 0.145 (P) = 0.118<(ST) = 4</td> PE 5 0	PP 5 0 0.82 0.93 10 0 0.9 0.96 Ambient 0 1.13 3.55 PE 5 0 1.03 1.16 10 0 1.17 1.26 Ambient 0 1.98 3.73 PP 5 0 0.56 0.66 10 0 0.74 0.89 Ambient 0 0.92 3.43 PE 5 0 0.54 0.8 10 0 0.63 0.96 Ambient 0 1.42 3.67 PP 5 0 0.38 0.42 10 0 0.47 0.59 Ambient 0 0.99 2.87 PP (Polypropylene) 1.13 1.38 PP (Polypropylene) 1.19 LSD 0.05 (SA) = 0.145 (P) = 0.118<(ST) = 4	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	PP 5 0 0.82 0.93 2.08 2.77 3.12 IO 0 0.9 0.96 2.43 3.4 3.86 Ambient 0 1.13 3.55 n.d. n.d. n.d. n.d. PE 5 0 1.03 1.16 1.24 2.35 2.85 Ambient 0 1.98 3.73 3.85 n.d. n.d. PM 5 0 0.56 0.66 0.78 1.28 1.66 10 0 0.74 0.89 1.08 1.52 1.87 Ambient 0 0.92 3.43 3.54 n.d. n.d. PM 5 0 0.56 0.8 1.08 1.17 1.31 Ambient 0 0.42 3.67 3.54 n.d. n.d. IO 0 0.47 0.59 0.66 1.1 1.19 Ambient 0 0.99			

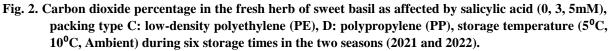

Table (2). Fresh weight loss % of sweet basil as affected by salicylic acid, packing type, and storage
temperature during six storage times in the two seasons (2021 and 2022)


n. d. values not determined due to deterioration of basil, SA0= without salicylic acid (control), SA1=salicylic acid at rate 3mM, SA2=salicylic acid at rate 5mM, packing type (P) PE= low-density polyethylene, PP= polypropylene, Storage temperature (ST)= 5° C, 10° C and Ambient temperature, Storage time (T)= days after storage, 0 time, 2,4,6,8 and 10 days.

During storage, CO_2 was high in PE bags. Polyethylene (PE) films are permeable to O2 and CO2, which modifies the environment within the bag, in addition to serving as an effective barrier against water loss caused by the high humidity formed within the pack of non-perforated bags (Kader, 1986). In sealed PE bags, an excessive amount of humidity promoted the growth of pathogenic microorganisms.


Concerning the effect of pre-harvest treatments with salicylic acid, the data revealed that, the highest value of O_2 and lowest value of CO_2 during storage had been measured inside the packages. SA at rate of 5 mM gave the highest values of O_2 at 17.36% and 17.66% in both seasons. While, the same concentration of SA (5mM) gave the lowest values of CO_2 at 2.45% and 2.58% in the first and the second seasons, respectively, compared to control. These findings are consistent with **Koyuncu** *et al.* (2019) on pomegranate and Sakaldaş *et al.* (2010) on dill.


The interaction between pre-harvest treatment, packaging material, storage temperature, and storage period was significant. However, after 10 days of storage at 5 °C and pre-harvest treatment with SA at a rate of 5 mM, the measured values of O_2 and CO_2 levels in the polypropylene bags were (16.21 % O_2 and 3.47 % CO_2) in the first season and (16.44 % O_2 and 3.61 % CO_2) in the second season. Followed by, after 10 days of storage at 10 °C and pre harvest treatments with SA at rate 5mM, the measured values of O_2 and CO_2 levels in the polypropylene bags were (15.07 % O_2 and 4.17 % CO_2) in the first season and (16.04 % O_2 and 3.13 % CO_2) in the second season, respectively.



 $LSD_{0.05} \quad (SA) = 0.\; 40 \quad (P) = 0.23 \quad (ST) = 1.14 \quad (T) = 1.02 \quad SAxPxSTxTime = 1.55$

3.3. Ethylene content (ppm)

Data in Fig. (3) showed that in the two seasons; there was a significant increase in ethylene during the storage period. Similar results had been obtained by (**Cantwell and Reid**, 2002).

Concerning the effect of storage temperature, the data revealed that, the highest value of ethylene during storage had been measured inside the packages stored at Ambient temperature, followed by the packages stored at 10 °C. while the lowest values of ethylene were measured at 5 °C. These results are similar, to **Martinez** *et al.* (2005), only traces of ethylene were found right after cutting the leaves of iceberg lettuce, which did not create measurable amounts of ethylene during storage at 5 °C. Moreover, **Spinardi and Ferrante** (2012) on lettuce, found that the ethylene content in stored bags at 4 °C lower than those stored at 10 °C. After five days of storage at 4 °C and 10 °C, the rate of ethylene production was approximately 15 times lower than it was at zero time. Because of the slower rates of biosynthesis during storage and the gradual leakage out of the package, the amount of ethylene accumulation in the bags has decreased.

Effect of package type on ethylene content, the presented data in Fig. (3) showed that PP packaging scored the lowest values of ethylene at 0.32 ppm in the first season, and 0.35 ppm in the second season. while, EP bags gave the highest values of ethylene 0.49 ppm in the first season and 0.50

ppm in the second season, respectively. This is due to the high permeability to low permeability of water vapor, which causes condensation of water vapor and damage to the stored basil plants. Too high humidity in sealed PE bags enhanced the growth of disease-causing microorganisms.

Concerning the effect of pre-harvest treatments with salicylic acid, the data revealed that, the lowest values of ethylene during storage had been measured inside the packages compared to control (without SA). SA at a rate of 5 mM gave the lowest values of ethylene at 0.35 and 0.37 ppm in both seasons.

The initial stage in the development of cold-induced injuries is membrane damage. Reactive oxygen species (ROS) are produced during this process, and antioxidant enzymes help to eliminate them from the membranes. When lipid molecules transition from a gel to a crystalline state, the metabolism is altered, leading to ion leakage, a decrease in mitochondrial activity, modifications in ethylene production and membrane-associated enzyme systems, as well as an accumulation of toxic metabolites. According to **Renhua** *et al.* (2008), exogenous SA could therefore be beneficial in decreasing the rate of respiration and ethylene production. SA treatment prevented softening by suppressing ethylene biosynthesis, thus delaying the climacteric rise in ethylene (Zhang and Zhang 2004). The results revealed that only 1 mM SA ensured significantly higher firmness (Zhang *et al.*, 2016).

The interaction between pre-harvest treatment, packaging material, storage temperature, and storage period was significant. However, after 10 days of storage basil plants treated with SA at a rate of 5 mM, the measured values of ethylene concentration in the polypropylene bags were 0.41 and 0.43 ppm when storage at 5 $^{\circ}$ C or 0.48 and 0.50 ppm at 10 $^{\circ}$ C in both seasons. It is noted that there are no significant differences between 5 $^{\circ}$ C and 10 $^{\circ}$ C when treated plants with salicylic acid and packaged in polypropylene.

Change of leave color during storage

It is generally accepted that leafy vegetables' superficial color, particularly their greenness, greatly impacts their quality. As the results shown in Figs 4,5 and 6 The color degree of the homogenized samples (L, a value and hue angle) was measured; the L value is the measure for the lightness of the leaves, a is greenness, while the hue angle represents a coordinate in a standardized color space.

The lightness of basil fresh herb was affected by storage time. There was a decrease in L^* , a value, and hue angle value with increasing the storage period indicating darker color. These results agreed with **Suamuang** *et al.*, (2016) on holy basil plant.

Concerning packaging material, the data revealed that there were significant differences between different packaging films. Sweet basil fresh herb packed in polypropylene bags gave the highest value of L, a, and hue angle values, resulting in lighter color and maintaining green color, while those packed with polyethylene gave the lowest values and resulted in darker color and green loss during storage. These results are true in the two seasons and agree with (Lee, 2008).

SA treatment kept the greenness value of sweet basil during cold storage whereas those of the control significantly decreased. Significant differences in lightness and hue value of both SA-treated and untreated sweet basil leaves were found over storage. Similarly, **Wei** *et al.*, (2011) found that SA treatment could maintain the superficial color of asparagus spears, due to delaying the deterioration in green color. The changes in chlorophyll content are generally related to the superficial color. The loss of total chlorophyll content is concomitant with the loss of greenness and the occurrence of yellowness in leafy vegetables (**Supapvanich** *et al.*, 2012). SA at a rate of 5mM gave the highest values of lightness, greenness, and hue angle in both seasons.

There were significant differences between different storage temperatures in L, a, and hue angle values. Sweet basil fresh herb stored at 10°C gave a higher L value as compared to those stored at 5°C and Ambient temperature in both seasons. Sweet basil plants stored at Ambient temperature and 5c gave the lowest values of hue angle as an important decreasing or intense yellowing compared to those stored at 10 °C, which maintained high hue angle values during storage. This result was similar to that found in basil (*Ocimum basilicum* L.) by **Hassan and Mahfouz (2010).**

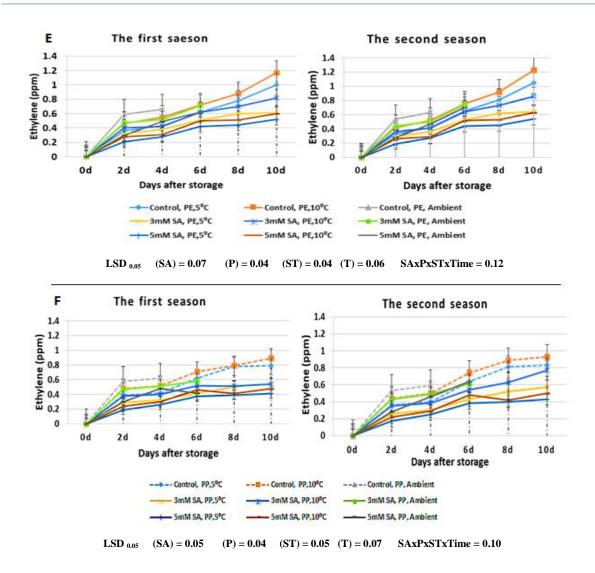


Fig. 3. Ethylene concentration (ppm) as affected by salicylic acid (0, 3, 5mM), packing type E: low-density polyethylene (PE), F: polypropylene (PP), storage temperature (5°C, 10°C, Ambient) during six storage times in the two seasons (2021 and 2022).

The interaction between pre-harvest treatment, packaging material, storage temperature, and storage period was significant. However, after 10 days of storage sweet basil plants treated with SA at a rate of 5mM and packed in polypropylene bags, and stored at 10 or 5 ^oC gave the highest value of hue angle (maintaining green color), lightness, and greenness values while those untreated (control) and packed with polyethylene and stored at ambient temperature gave the lowest one resulted in green color loss. It is noted that the type of packaging (polypropylene) and pre-harvest treatment with salicylic acid at a rate of 5mM reduced the loss of green color and chlorophyll content at a storage temperature of 5c after 10 days of storage. These suggest that pre-harvest SA treatment was able to maintain the superficial color of sweet basil by retarding chlorophyll loss. These might involve the increase in photosynthesis rate and the number of chloroplasts by SA which described by **Radwan** *et al.*, (2008). Furthermore, it was reported by **Li** *et al.*, (1992) and Kazemi *et al.*, (2011) that the reduction of chlorophyll loss by SA application might due to the suppression of ACC synthase and ACC oxidase activities.

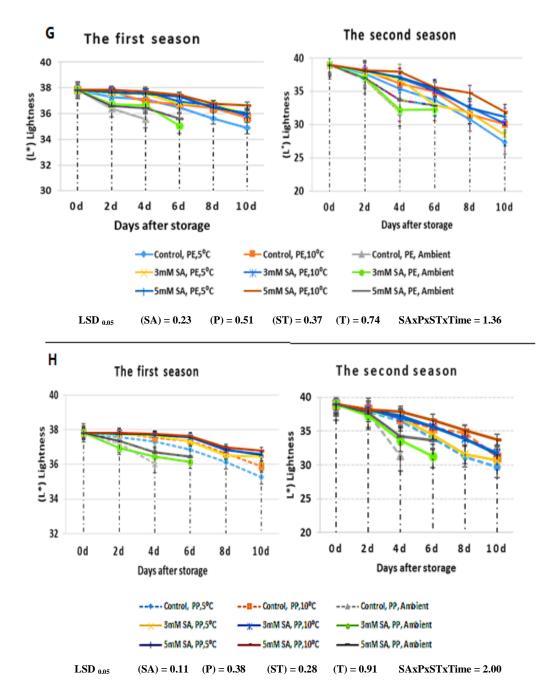


Fig. 4. Color degree (L*) Lightness in sweet basil as affected by salicylic acid (0, 3, 5mM), packing type G: lowdensity polyethylene (PE), H: polypropylene (PP), storage temperature (5° C, 10° C, Ambient) during six storage times in the two seasons (2021 and 2022).

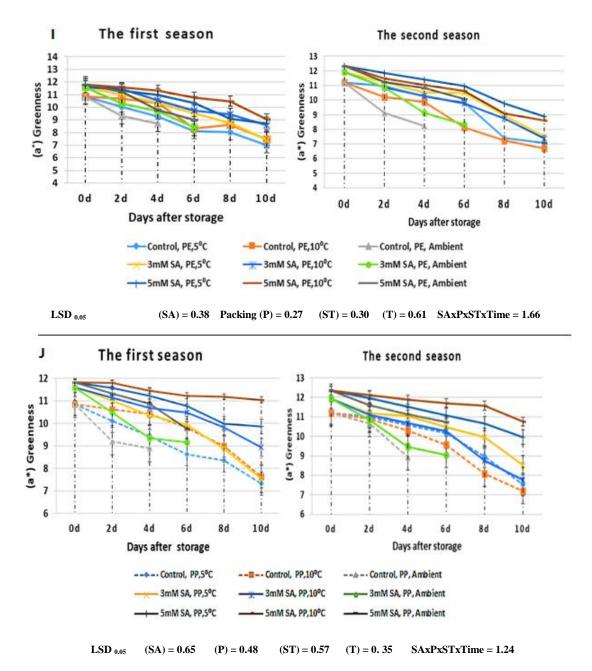


Fig. 5. Color degree (a^{*}) Greenness in sweet basil as affected by salicylic acid (0, 3, 5mM), packing type I: lowdensity polyethylene (PE), J: polypropylene (PP), storage temperature (5[°] C, 10[°] C, Ambient) during six storage times in the two seasons (2021 and 2022).

 $LSD_{\ 0.05} \qquad (SA) = 0.88 \qquad (P) = 0.53 \quad (ST) = 0.70 \qquad (T) = 1.17 \qquad SAxPxSTxTime = 1.80$

Fig. 6. Color degree (Hue value) in sweet basil as affected by salicylic acid (0, 3, 5mM), packing type K: lowdensity polyethylene (PE), L: polypropylene (PP), storage temperature (5°C, 10°C, Ambient) during six storage times in the two seasons (2021 and 2022).

3.4. Total chlorophyll content

Total chlorophyll content of sweet basil was decreased as the storage period was extended Fig. 7. The decrease of this content is probably due to the degradation of chlorophyll by chlorophyllase enzyme. Our results agreed with **Sakaldas and Kays (2010) and Masoud, (2011).**

Barbosa *et al.*, (2016) indicated that there are two stages to the plants' degradation of chlorophyll. During the initial stage, the mass and the water level decreased in the leaves the pigments became more concentrated. The following shows a minor loss of green color or yellowing, which indicates a decline in quality over time in the medicinal and aromatic plants.

Regarding the effect of packaging materials, data showed that treatments during storage varied significantly from one another.; however sweet basil fresh herb packed in polypropylene seems to be the most effective in reducing the total chlorophyll loss; followed by polyethylene with significant differences between them. These results were true in the two seasons and agree with **Nand and Yadav (2014)** who concluded an increase in the value of total chlorophyll in PP (polypropylene) on *Anethum graveolens* L.

Regarding the effect of storage temperature, significant differences had been found in total chlorophyll content between different temperature degrees during storage. Regarding the effect of storage temperature, significant differences had been found in total chlorophyll content between different temperature degrees during storage, however, sweet basil plants stored at 10°C gave the highest value of total chlorophyll content, followed by 5°C. while those stored at an ambient temperature resulted in the lowest one. This result was similar to that found in basil (*Ocimum basilicum* L.) by **Hassan and Mahfouz** (**2010**)., who in a study on storage at 5 °C reported that the total chlorophyll content gradually decreased during storage.

The loss of total chlorophyll content is concomitant with the loss of greenness and the occurrence of yellowness in leafy vegetables (**Supapvanich** *et al.*, **2012**). In this investigation, the total chlorophyll content of the sweet basil was preserved by the SA application while it was significantly decreased in the untreated plants. (Fig.7.). SA at a rate of 5 mM gave the highest mean values of total chlorophyll content (1.27 and 1.31 mg/g) in both seasons. Similarly, the application of SA preserved the greenness and chlorophyll content of asparagus (**Wei** *et al.*, **2011**). These suggest that pre-harvest SA treatment was able to maintain the superficial color of sweet basil by retarding chlorophyll loss. Also, **Radwan** *et al.* (**2008**) reported that an increase in the number of chloroplasts and the rate of photosynthesis by SA. Moreover, **Kazemi** *et al.*, (**2011**) found that The decrease of chlorophyll loss by SA application could due to the suppression of ACC synthase and ACC oxidase activities.

The interaction between pre-harvest treatment, packaging material, storage temperature, and storage period was significant. After 10 days of storage, sweet basil treated with SA at rate 5mM, packed in polypropylene bags and stored at 10 $^{\circ}$ C had the highest value of chlorophyll content (1.29 and 1.37 mg/g F.W) in both seasons, followed by sweet basil treated with SA at rate 5mM, packed in polypropylene bags and stored at 5 $^{\circ}$ C after 10 days. While the lowest one was found after 4 days of storage in those untreated with SA, packed in polypthylene and stored at ambient temperature.

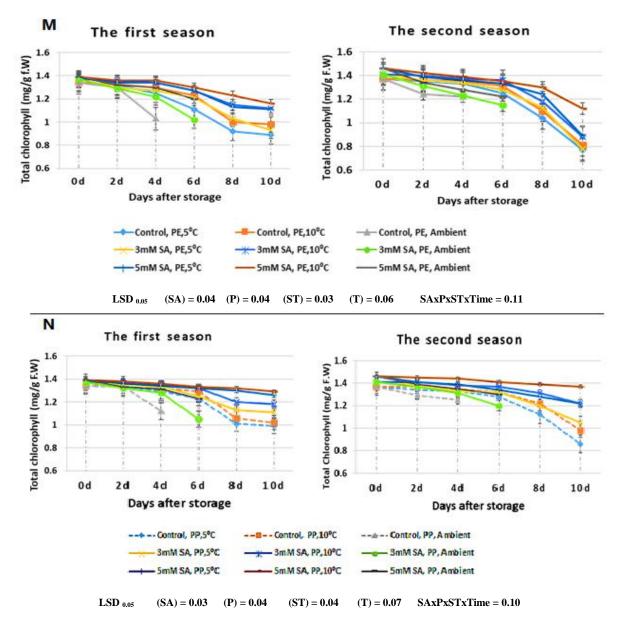


Fig. 7. Total chlorophyll content mg/g in sweet basil as affected by salicylic acid (0, 3, 5mM), packing type M: low-density polyethylene (PE), N: polypropylene (PP), storage temperature (5°C, 10°C, Ambient) during six storage times in the two seasons (2021 and 2022).

3.5. Bioactive compounds

3.5.1. Total phenols and DPPH scavenging activity

Fresh herbs were frequently studied for their antioxidant properties, particularly those involving DPPH scavenging activity and total phenols, which are recognized as the physiologically active chemicals beneficial to human health. Total phenols and DPPH scavenging activity of basil fresh herb were affected by storage time as shown in Tables (3 and 4). There was a decrease in total phenols and DPPH scavenging activity with increasing the storage period. These results agreed with **Ghasemzadeh** *et al.*, (2016) on basil plant.

Total phenol and DPPH scavenging activity values of SA-treated Sweet basil were significantly higher than those of the control. SA at a rate of 5mM gave the highest values of total phenol (8.66 and 8.80 mg/g) and DPPH scavenging activity (76.26% and 74.48%) in both seasons. Recent research on fruits and vegetables has demonstrated that a variety of bioactive substances, including their concentration of flavonoids and phenolics (Wei *et al.*, 2011) and antioxidant enzymes (Supapvanich *et al.*, 2012), could be responsible for their antioxidant efficacy recorded (Wei *et al.*, 2011). In the similar vein, total phenols content in SA-treated rambutan fruit (Supapvanich, 2015) and peach fruit (Razavi *et al.*, 2014) were higher than those of the untreated fruits. These demonstrate that fresh produce is induced by SA to make physiologically active chemicals, which is a result of the defense mechanism being stimulated, as explained by Supapvanich and Promyou (2013). Also, Erogul and Özsoydan (2020) reported that preharvest SA treatment at rate 2mM increased antioxidant capacity and total phenols in peach compared to control

Concerning the effect of packaging materials, data showed that there were significant differences among treatments during storage; however sweet basil fresh herb packed in polypropylene gave the highest values of total phenols 8.13 and 8.09 mg/g and DPPH scavenging activity at 74.72% and 70.76% compared to polyethylene bags with significant differences between them. These results were true in the two seasons and agree with (**Sharma et al., 2018**) on basil.

The decrease of total phenols and DPPH scavenging activity was significantly rapid under ambient conditions as compared to plants kept at 10 °C and 5 °C. however, sweet basil plants stored at 10 °C gave the highest value of total phenols 8.50 and 8.65 mg/g and DPPH scavenging activity at 76.75% and 73.34% in both seasons, followed by 5 °C. These results agreed with **Sharma** *et al.*, (2018) and (Dos *et al.*, 2020) who found fresh basil leaves stored for 7 days in the dark at 10 °C showed higher phenolic content and antioxidant activity.

The majority of the secondary metabolites in sweet basil that are responsible for its fragrance, color, and pharmacological and antioxidant properties are likewise lost at lower storage temperatures (**Ghasemzadeh** *et al.*, **2016**). Samples of basil kept for nine days at 4°C had substantially less antioxidants, polyphenols, and volatile aroma components than samples kept at 12°C. (**Fratianni** *et al.*, **2017**). Sudden declines in basil volatile compounds have been observed even earlier after only 3 days at 5°C (**Rodeo and Mitcham**, **2023**).

The interaction between pre-harvest treatment, packaging material, storage temperature, and storage period was significant. However, after 10 days of storage sweet basil plants treated with SA at a rate of 5mM and packed in polypropylene bags and stored at 10 °C and 5 °C gave the highest values of total phenol 7.85, 8.09 and 7.63, 7.97 mg/g and DPPH scavenging activity 70.97%, 74.26% and 71.40%, 74.85% in the first and the second seasons, respectively. While those untreated (control) and packed with polyethylene and stored at ambient temperature after 4 days gave the lowest values of total phenol and DPPH scavenging activity in both seasons.

				The First Sea								
Pre-harvest	Treatments Packing Storage time (T)											
Salicylic	Packing	Storage			Storage tin			10	Mean			
Acid (SA)	Type (P)	temp. (ST)	0	2	4	6	8	10	SA			
	PE	5 10	8.59 8.59	8.40 8.49	8.02 8.19	7.75 7.84	6.45 7.28	6.13 6.79				
SA0		Ambient	8.59	6.22	5.60	n.d.	n.d.	0.79 n.d.	7.53			
	PP	5	8.59	8.34	8.34	7.94	7.56	6.88	7.55			
Control		10	8.59	8.55	8.42	8.11	7.36	7.37				
		-										
	PE	Ambient 5	8.59	6.55	5.76 8.21	n.d. 7.90	n.d.	n.d.				
	PE	-	9.01	8.38			7.87	7.29				
		10	9.01	8.97	8.83	8.41	8.21	7.54				
SA1	DD	Ambient	9.01	7.23	6.59	5.24	n.d.	n.d.	7.92			
(3mM)	PP	5	9.01	8.68	8.56	8.11	7.73	7.35				
		10	9.01	9.05	8.33	8.02	7.48	7.19				
		Ambient	9.01	8.34	6.91	5.72	n.d.	n.d.				
	PE	5	10.10	9.17	8.93	8.82	7.51	7.48				
		10	10.10	9.84	9.58	9.22	8.44	7.71				
SA2		Ambient	10.10	7.65	7.11	6.55	n.d.	n.d.	8.66			
(5mM)	PP	5	10.10	9.35	9.35	9.15	8.12	7.63				
		10	10.10	10.01	9.76	9.28	8.36	7.85				
		Ambient	10.10	8.21	7.43	6.71	n.d.	n.d.				
Mean (T)			9.23	8.41	8.00	7.80	7.70	7.27				
Mean (P)	PE (Poly	,	7.95									
	PP (Po	lypropylene)	8.13									
Mean (ST)		5 °C	8.24									
		10 °C	8.50									
	LSD 0.05	Ambient	7.37 (SA) = 0.083	$(\mathbf{D}) = 0.06$	(ST) = 0.084	(T) = 0.119	CA-D-CT		1			
	LSD 0.05			$\frac{(\mathbf{F}) = 0.00}{\text{The Second S}}$		(1) = 0.118	SAXEXST	x = 0.25)			
	PE	5	8.51	8.68	8.26	7.06	5.27	4.94				
	12	10	8.51	8.78	8.44	7.2	5.66	6.11				
SA0		Ambient	8.51	6.08	4.71	n.d.	n.d.	n.d.	7.18			
Control	PP	5	8.51	8.63	8.57	7.35	5.58	7.09				
control		10	8.51	8.82	8.7	7.44	6.19	7.53				
		Ambient	8.51	6.42	4.8	n.d.	n.d.	n.d.				
	PE	5	9.31	8.66	8.45	8.22	7.21	7.13				
	12	10	9.31	9.27	9.09	8.75	7.66	7.89				
SA1		Ambient	9.31	6.62	5.08	4.51	n.d.	n.d.	7.88			
(3mM)	PP	5	9.31	8.97	8.61			7.91	7.00			
(JIIIVI)		10				8.32	8.35					
		Ambient	9.31	9.36	9.2	8.92	8.72	8.13				
	PE	Ambient 5	9.31	6.88	5.25	4.67	n.d.	n.d.				
	rĿ		10.46	9.49	9.19	9.18	8.52	7.83				
642		10 A multi sent	10.46	10.17	9.86	9.58	8.39	7.75	0.00			
SA2 (5mM)		Ambient	10.46	7.45	6.66	5.86	n.d.	n.d.	8.80			
(SIIIVI)	PP	5	10.46	9.67	9.63	8.52	8.55	7.97				
		10 Ambient	10.46 10.46	10.35 7.83	10.05 7.11	9.65 6.32	9.12	8.09				
Mean (T)	l	Ambient	9.43	8.45	7.11 7.87	0.32 7.60	n.d. 7.44	n.d. 7.36				
· · ·	PE (Polyethy	lene)	9.43 7.81	0.43	1.01	/.00	/.++	7.30				
	PP (Polypr	,	8.09									
Mean (ST)	5°C		8.29									
~-/	10 0	С	8.65									
	Ambi		6.91									
	LSD 0.05		(SA) = 0.104	$(\mathbf{P}) = 0.085$	(ST) = 0.104	4 $(T) = 0.14$	7 SAx	PxSTxTime :	= 0.27			

Table (3). Total phenol (mg/g) in sweet basil as affected by salicylic acid, packing type, storage temperature during six storage times in the two seasons (2021-2022)

n. d. values not determined due to deterioration of basil, SA0= without salicylic acid (control), SA1=salicylic acid at rate 3mM, SA2=salicylic acid at rate 5mM, packing type (P) PE= low-density polyethylene, PP= polypropylene, Storage temperature (ST)= 5° C, 10° C and Ambient temperature, Storage time (T)= days after storage, 0 time, 2,4,6,8 and 10 days.

Due he set			Т	he First Sea					
Pre-harvest	D. L'	<u>G</u> (1)	1		Treatm				Maan
Salicylic	Packing	Storage	0		Storage		0	10	Mean
Acid (SA)	Type (P) PE	temp. (ST)	0	2 80.2	4 76.68	6	8	10	SA
	PE	5 10	80.29 80.29	80.2	78.3	68.99 72.07	65.98 65.48	58.58 64.35	
SA0 Control		Ambient	80.29	66.28	51.09	n.d	n.d.	n.d.	71.21
	PP	5	80.29	80.45	77.31	75.09	69.85	63.89	/1.//1
Control		10	80.29	80.43	79.36	73.09	64.64		
		Ambient						63.38	
	PE	5	80.29	67.7	53.71	n.d.	n.d.	n.d.	
	ГĽ	10	82.59	81.14	78.92	71.02	67.21	64.17	
			82.59	81.7	81.36	74.98	69.43	67.23	=2.42
SA1	DD	Ambient	82.59	69.39	57.12	54.53	n.d.	n.d.	73.42
(3mM)	PP	5	82.59	82.07	80.88	75.65	73.04	70.28	
		10	82.59	81.91	81.38	78.54	75.01	70.71	
		Ambient	82.59	72.47	61.95	56.74	n.d.	n.d.	
	PE	5	83.41	81.94	79.34	75.57	71.71	66.69	
		10	83.41	82.11	82.01	79.4	73.48	67.65	
SA2		Ambient	83.41	74.93	65.24	60.37	n.d.	n.d.	76.26
(5mM)	PP	5	83.41	82.68	82.39	80.74	74.87	70.97	
		10	83.41	83.29	82.92	81.71	77.64	71.4	
		Ambient	83.41	75.61	69.69	62.76	n.d.	n.d.	
Mean (T)			82.10	78.02	73.31	71.67	70.70	66.61	
Mean (P)	PE (Polyet	hylene)	72.54						
	PP (Polyp		74.72						
Mean (ST)		5 ℃	75.58						
		10 ⁰C	76.75						
		ıbient	68.55						
	LSD 0.05		(SA) = 0.23			0 (T) = 0.32	SAXPXS	TxTime = 0.	56
	PE	5	74.94	e Second Se 71.05	68.57	65.14	50.64	48.02	
	112	10	74.94	73.99	72.3	68.39	61.16	61.92	
SA0		Ambient	74.94	60.2	47.11	n.d.	n.d.	n.d.	65.23
Control	PP	5	74.94	73.17	70.27	66.69	60.87	51.34	05.25
Control		10	74.94	74.28	72.15			63.3	
		Ambient	74.94			69.14	63.14		
	PE	5	1	63.58	50.68	n.d.	n.d.	n.d.	
	FL	10	78.46	74.81	71.99	68.78	61.55	60.09	
<i></i>			78.46	76.53	74.4	71.5	66.65	65.46	<0.0 =
SA1	DD	Ambient	78.46	67.04	55.24	50.25	n.d.	n.d.	68.97
(3mM)	PP	5	78.46	77.54	75.41	70.18	63.7	63.22	
		10	78.46	77.69	75.88	73.12	70.21	68.38	
		Ambient	78.46	69.12	57.02	52.36	n.d.	n.d.	
	PE	5	80.63	79.48	78.5	73.54	70.66	72.15	
		10	80.63	79.64	78.18	76.33	72.99	70.67	
SA2		Ambient	80.63	70.59	61.45	54.39	n.d.	n.d.	74.48
(5mM)	PP	5	80.63	80.11	78.82	77.92	74.82	74.26	
		10	80.63	80.51	80.33	79.85	76.13	74.85	
		Ambient	80.63	72.85	68.15	64.03	n.d.	n.d.	
Mean (T)			78.01	73.45	68.69	67.60	66.04	64.47	
	PE (Polyethyle	/	68.42						
	PP (Polyprop	ylene)	70.76 70.59						ł
	Mean (ST) 5°C				1	1	1		
			72.24						
	10 °C Ambient		73.34 64.83						

Table (4). DPPH scavenging activity as affected by salicylic acid, packing type, storagetemperature during six storage times in the two seasons (2021-2022)

n. d. values not determined due to deterioration of basil, SA0= without salicylic acid (control), SA1=salicylic acid at rate 3mM, SA2=salicylic acid at rate 5mM, packing type (P) PE= low-density polyethylene, PP= polypropylene, Storage temperature (ST)= 5° C, 10° C and Ambient temperature, Storage time (T)= days after storage, 0 time, 2,4,6,8 and 10 days

3.5.2. Chilling injury

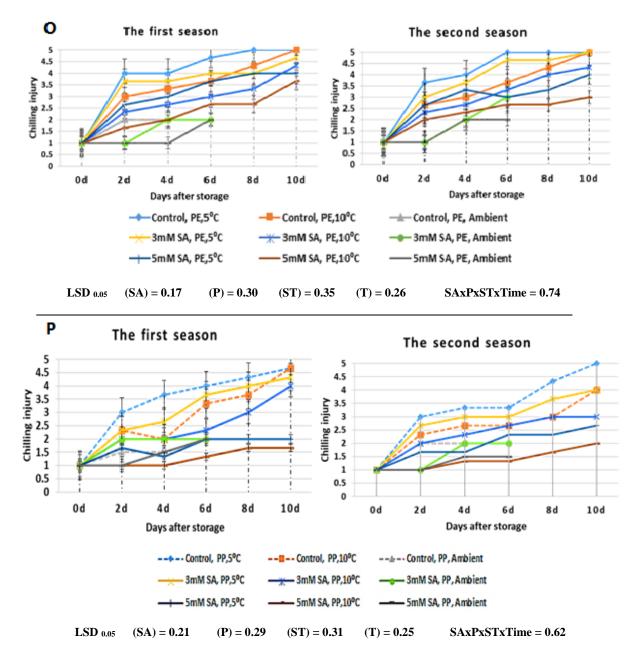
Symptoms of chilling injury include leaf necrosis, which shows as brown spots on leaves (Fig. 10.) which due to the dysfunction of oil glands, wilting or loss of leaf turgidity and decay (**Brindisi** *et al.*, **2021**).

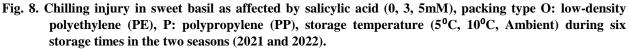
As the result shown in Fig. 8. Day 2 marked the beginning of CI symptoms, which got worse for the course of the storage period. SA treatments were able to reduce CI of the basil plants (Fig.8.). Application of salicylic acid at rate 5 mM was the most effective in alleviating CI in the basil when compared to untreated plants and 3 mM of SA. This can due to the stimulation of a defense mechanism system by salicylic acid (**Supapvanich and Promyou, 2013**) which the cell membrane structure of oil glands in the basil leaves was also maintained. This clearly shown that SA treatment preserves membrane structure and enhances membrane properties, hence increasing plant resistance to chilling (**Luo**, *et al.*, **2011**). Preharvest spraying with 5 mM SA in lemon basil clearly reduced the increase in EL and relieved CI. Furthermore, in comparison to the untreated basil, there was less malondialdehyde concentration, a secondary product from membrane oxidation (**Supapvanich**, *et al.*, **2015**).

Concerning the effect of packaging materials, the results showed that there were significant differences among treatments during storage (Fig.8.); however sweet basil fresh herb packed in polypropylene gave the lowest values of CI symptoms followed by polyethylene with significant differences between them. These results agreed with (**Sharma** *et al.*, **2018**) suggests that the suitable humidity level created by packaging material may have an effect in ameliorating chilling injury in basil.

The development of CI symptoms in sweet basil was affected by cold storage temperatures. Browning symptoms, as a manifestation of CI, were greater at 5°C compared to 10 0 C or Ambient temperature. These results agreed with **Suamuang** *et al.*, (2016) on holy basil plant. It was also found that the severity of chilling injury symptoms was dependent on the period of exposure as well as on the specific storage temperature.

The interaction between pre-harvest treatment, packaging material, storage temperature and storage period was significant. However, after 10 days of storage sweet basil plants treated with SA at a rate of 5 mM and packed in polypropylene bags gave the lowest values of CI symptoms while those untreated (control) and packed with polyethylene and stored at 5 $^{\circ}$ C gave the highest values of CI symptom in both seasons. Fig (9). At the end of storage (day 10), the CI score of 5 mM SA-treated sweet basil and stored at 10 $^{\circ}$ C or 5 $^{\circ}$ C in polypropylene bags was significantly lower than that of others which it was lower than 2.5 (acceptable score).


3.6. Essential oil percentage


The mean values of sweet basil essential oil percentage of different treatments during storage time are shown in Table (5). Pre-harvest treatments with salicylic acid reduced loss of essential oil content during storage compared to the control (without SA). SA at a rate of 5 mM gave the maximum values of essential oil content 0.425% and 0.393% in both seasons. These results agreed with (**Abdel-Hamid, 2020**) on Mint and Sage.

Regarding the effect of the storage period, results showed that essential oil decreased by increasing the storage period (Table, 5). These results are in line with **Rashed and Younis (2010)**, on oregano. Basil plants synthesize and store essential oil (EO) in superficial peltate glands and trichomes (**Gang** *et al.*, **2001**). Fresh basil presented a linear decrease in the oil content during the storage period (**Silva** *et al.*, **2005**). The impact of increased respiration rates on product temperature, organic matter decomposition, transpiration

losses, decrease in inactive ingredients, and reduction in external quality traits could be the cause of this (Bottcher *et al.*, 2001).

Effect of packing on essential oil (%) of fresh herb during 2021/2022 seasons, the presented data in Table (5), showed that PP packaging scored the highest essential oil content 0.401% and 0.371% than EP packaging 0.380% and 0.353% in both seasons. Similar results had been obtained by **El-Moghazy** (**2021**) on sweet basil.

Control, PE, 0 time Control, PE, 5 ° C, 10

SA 5mM, PE, 5 $^{\rm o}$ C, 10 SA 5mM, PE, 10 $^{\rm o}$ C, 10

Control, PP, 0 time Control, PP, 5 ° C, 10 SA 5mM, PP, 5 ° C, 10 SA 5mM, PP, 10 ° C, 10 **Fig. 9. Chilling injury in sweet basil as affected by salicylic acid (5mM), packing type: low-density polyethylene** (PE), polypropylene (PP), storage temperature (5°C and 10°C) after 10 days of storage.

Chilling injury score measurement

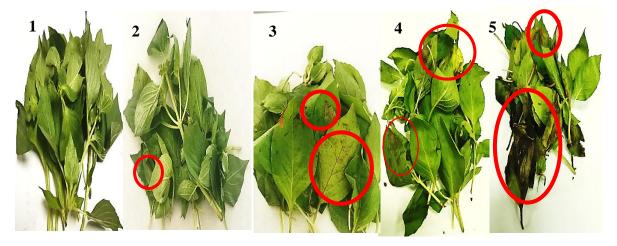


Fig. 10. Chilling injury (CI) score rating: (1) no damage, (2) several dark spots, (3) less than 30% of total leaf area brown, (4) 30–50% of leaf area brown, and (5) more than 50% of leaf area brown.

The data recorded on the essential oil percent (Table 5) showed that the effect of storage temperature, cleared significant differences in the essential oil percent between the different temperatures during the storage, however, sweet basil plants stored at 10 °C gave the highest values of essential oil content 0.407% and 0.385%, followed by 5 °C, while those stored at Ambient temperature resulted in the lowest values in both seasons. These results confirmed those of **Fratianni** *et al.* (2017), who discovered that the majority of the secondary metabolites in basil that are responsible for its aroma, color, and pharmacological and antioxidant properties are likewise lost at lower storage temperatures. Samples of basil that were kept for nine days at 4°C had significantly lower antioxidants, polyphenols, and volatile aroma compounds than samples that were kept at 12°C. Basil volatile compound contents have been shown to suddenly drop even earlier, after three days at 5°C. (Rodeo and Mitcham, 2023).

The interaction between pre-harvest treatment, packaging material, storage temperature, and storage period was significant. However, after 10 days of storage sweet basil plants treated with SA at rate of 5 mM and packed in polypropylene bags and stored at 10 $^{\circ}$ C gave the highest values of essential oil content 0.401% and 0.383% while those untreated (control) and packed with polyethylene and stored at 5 $^{\circ}$ C after 10 days gave the lowest values of essential oil content 0.217% and 0.177% in both seasons.

The differences were not significant between 5 0 C and 10 0 C under the same storage and packaging type (PP) after 10 days of storage in both seasons. Application of salicylic acid at 5mM as pre-harvest treatment was the most effective in reduce CI in the basil which was stored at 5 0 C and packed in polypropylene pages. Therefore, it reduced the loss of volatile oil content after 10 days of storage. This might be because SA induced a defense mechanism system (**Supapvanich and Promyou, 2013**), which preserved the oil glands cell membrane structure in basil leaves.

3.7. G LC analysis of essential oil

Volatile oil compounds are responsible for the characteristic aroma and flavor of basil (**Chang** *et al.*, **2007**). The basil essential oil composition as a result of different pre-harvest treatments, storage temperatures (°C), and packaging materials during 10 days storage period are presented in Table (6) showed clearly that, application combinations had appreciable quantitative effects on essential oil constituents of sweet basil. six constituents were identified by GC in oil samples. The main components were found: α -pinene, myrcene, β -pinene, linalool, estragole (methyl chavicol) and eugenol. These compounds confer green, fresh, floral, and clove aroma and flavor to 'sweet basil' (Patel *et al.*, 2021). α -pinene, β -pinene, myrcene, linalool, and eugenol decreased with storage duration and were mostly affected by pre-harvest treatments, storage temperature, and packing materials.

When stored sweet basil in PE or PP bags, it was found that levels of these volatiles were generally lower at 5°C compared to 10°C after 4 days of storage. Also, plants stored at Ambient temperature gave the lowest levels of volatiles regardless of the type of package.

After 10 days of storage sweet basil plants treated with SA at a rate of 5 mM and packed in polypropylene bags and stored at 10 0 C gave the highest values of linalool 41.72%, eugenol 15.56% and estragole 1.79%. It is noted that pre-harvest treatment with salicylic acid at a rate of 5mM led to maintaining the percentage of volatile compounds in basil plants after 10 days of storage at a temperature of 5 0 C and packaging in polypropylene (PP) bags, with mean values of linalool 40.28%, eugenol 15.09% and estragole 1.22%. While the lowest values of linalool 26.42%, eugenol 8.89%, and estragole 0.89% were recorded with untreated sweet basil which packed in polyethylene bags and stored at 5 0 C after 10 days of storage.

Pre-harvest				eason Tre	eatments					
Salicylic	Packing	Storage	Storage time (T)							
Acid (SA)	Type (P)	temp. (ST)	0	2	4	6	8	10	Mean SA	
	PE	5	0.437	0.42	0.392	0.36	0.317	0.217	5A	
	112	10	0.437	0.42	0.403	0.377	0.343	0.217		
SA0		Ambient	0.437	0.304	0.403	n. d.	n. d.	n. d.	0.362	
Control	РР	5	0.437	0.423	0.207	0.38	0.340	0.21	0.302	
Control	11	10	0.437	0.423	0.41	0.400	0.340	0.21		
		Ambient	0.437	0.437	0.427	n. d.	n. d.	n. d.		
	PE	5	0.46	0.327	0.294	0.39	0.330	0.24		
SA1	r£	10	0.46	0.445	0.400	0.39	0.330	0.24		
		Ambient	0.46	0.433	0.425	0.413	n. d.	n. d.	0.384	
(3mM)	PP		0.46	0.340	0.323	0.303	0.363	0.253	0.364	
(SINIVI)	PP	5								
		10	0.46	0.457	0.44	0.42	0.38	0.287		
		Ambient	0.46	0.363	0.344	0.315	n. d.	n. d.		
	PE	5	0.5	0.463	0.44	0.427	0.347	0.303		
		10	0.5	0.437	0.46	0.44	0.367	0.317		
SA2		Ambient	0.5	0.413	0.337	0.313	n. d.	n. d.	0.425	
(5mM)	PP	5	0.5	0.503	0.463	0.447	0.413	0.390		
		10	0.5	0.497	0.48	0.47	0.433	0.401		
		Ambient	0.5	0.427	0.382	0.325	n. d.	n. d.		
Mean (T)			0.466	0.420	0.396	0.388	0.363	0.282		
Mean (P)	PE (Polyeth		0.380							
	PP (Polypro	opylene)	0.401							
Mean (ST)	5 °C		0.394							
	10 °C		0.407							
		. 4	0.369							
	Ambie	nt	0.309							
	Ambier LSD 0.05	nt		licylic acid	(SA) = 0.003	5	Packing (I	P) = 0.004		
		nt	Sal	licylic acid (e temperatu			Packing (I Storage tim		007	
		<u>nt</u>	Sal		re (ST) = 0		storage tim		007	
		nt	Sal	e temperatu	re (ST) = 0	.005 S	storage tim)07	
		nt5	Sal Storage	e temperatu	re (ST) = 0	.005 S	storage tim)07	
	LSD 0.05		Sa Storag The Second S	e temperatu Season	re (ST) = 0 SAxPxS	.005 S [xTime = (Storage tim).01	es(T) = 0.0	007	
SA0	LSD 0.05	5 10	Sa Storag The Second S 0.421 0.421	e temperatu Season 0.401 0.38	0.343 0.364	.005 S ExTime = 0 0.323 0.348	0.266 0.288	es (T) = 0.0 0.177 0.205		
SA0 Control	LSD 0.05 PE	5 10 Ambient	Sa Storage The Second S 0.421 0.421 0.421	e temperatu Season 0.401 0.38 0.301	re (ST) = 0 SAxPxST 0.343 0.364 0.232	.005 S ExTime = 0 0.323 0.348 n. d.	0.266 0.288 0.288 0.288	0.177 0.205 n.d.	0.336	
SA0 Control	LSD 0.05	5 10 Ambient 5	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421	e temperatu Season 0.401 0.38 0.301 0.389	Image: 0.343 0.343 0.364 0.232 0.37 0.37	.005 S ExTime = 0 0.323 0.348 n. d. 0.342	0.266 0.288 0.305	es (T) = 0.0 0.177 0.205 n.d. 0.242		
	LSD 0.05 PE	5 10 Ambient 5 10	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421 0.421	e temperatu Season 0.401 0.38 0.301 0.389 0.401	re (ST) = 0 SAxPxST 0.343 0.364 0.232 0.37 0.386	.005 S [xTime = 0] 0.323 0.348 n. d. 0.342 0.368	0.266 0.288 n.d. 0.305 0.322	0.177 0.205 n.d. 0.242 0.28		
	PE PP PP	5 10 Ambient 5 10 Ambient	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323	rre (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251	.005 S 0.323 0.348 n. d. 0.342 0.368 n.d.	0.266 0.288 0.305 0.322 0.322 0.322	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d.		
	LSD 0.05 PE	5 10 Ambient 5 10 Ambient 5	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371	.005 S 0.323 0.348 n. d. 0.342 0.368 n.d. 0.349 0.349	0.266 0.288 0.305 0.322 0.322 0.322	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249		
Control	PE PP PP	5 10 Ambient 5 10 Ambient 5 10	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382	.005 S CxTime = 0 0 0.323 0.348 n. d. 0.342 0.368 n.d. 0.349 0.371	0.266 0.288 0.305 0.322 0.322 0.322	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d.	0.336	
Control SA1	LSD 0.05 PE PP PE	5 10 Ambient 5 10 Ambient 5 10 Ambient	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305	.005 S CxTime = 0 0.323 0.348 n. d. 0.342 0.368 n.d. 0.349 0.371 0.224	0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305		
Control	PE PP PP	5 10 Ambient 5 10 Ambient 5 10 Ambient 5	Sa Storage The Second S 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376	.005 S CxTime = 0 0.323 0.348 n. d. 0.342 0.368 n.d. 0.349 0.371 0.224 0.354	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283	0.336	
Control SA1	LSD 0.05 PE PP PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 10 10	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446 0.446 0.446 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408	.005 S Image: Constraint of the second	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305	0.336	
Control SA1	LSD 0.05 PE PP PE PP	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.426 0.446 0.446 0.446 0.446 0.446 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.305 0.376 0.408 0.281	.005 S 0.323 0.348 n. d. 0.342 0.342 0.368 n.d. 0.349 0.371 0.224 0.354 0.377	0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d.	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d.	0.336	
Control SA1	LSD 0.05 PE PP PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 5 10 5 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.426 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.305 0.376 0.408	.005 S 0.323 0.348 n. d. 0.342 0.342 0.368 n.d. 0.349 0.349 0.354 0.354 0.371 0.224 0.354 0.377 0.246 0.382 0.382	0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.304	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.283 0.305 n.d.	0.336	
Control SA1 (3mM)	PE PE PE PE PP	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 10 10 10 10 10 10 10 10 10	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.426 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.446	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.305 0.376 0.408 0.281 0.408 0.426	.005 S 0.323 0.348 n. d. 0.342 0.342 0.368 n.d. 0.349 0.349 0.354 0.354 0.371 0.224 0.354 0.377 0.246 0.382 0.404	0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.304 0.304	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.283 0.305 n.d. 0.283 0.305 n.d.	0.336	
Control SA1 (3mM) SA2	LSD 0.05 PE PP PE PP PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient	Sa Storage 0.421 0.426 0.446 0.446 0.446 0.446 0.446 0.446 0.443 0.483 0.483	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.281 0.408 0.426 0.327	.005 S 0.323 0.348 n. d. 0.342 0.342 0.368 n.d. 0.349 0.371 0.224 0.354 0.377 0.246 0.382 0.404 0.243	0.266 0.288 n.d. 0.305 0.322 n.d. 0.321 0.331 0.342 n.d. 0.304 0.369 n.d.	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.283 0.305 n.d. 0.283 0.305 n.d.	0.336	
Control SA1 (3mM)	PE PE PE PE PP	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 5 10 Ambient 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 10 5 5 5 10 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5	Sa Storage 0.421 0.446 0.446 0.446 0.446 0.483 0.483 0.483	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.305 0.305 0.305 0.408 0.281 0.408 0.426 0.327 0.428	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.371 0.224 0.354 0.377 0.246 0.382 0.404 0.243	0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.304 0.304 0.369 n.d. 0.323	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.305 n.d. 0.283 0.305 n.d. 0.283 0.305 n.d. 0.329 n.d. 0.308	0.336	
Control SA1 (3mM) SA2	LSD 0.05 PE PP PE PP PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 10 10 10 10 10 10 10 10 10	Sa Storage The Second S 0.421 0.446 0.446 0.446 0.483 0.483 0.483 0.483	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.368 0.246 0.382 0.404 0.243 0.411 0.421	Output 0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.304 0.369 n.d. 0.323	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.283 0.305 n.d. 0.283 0.305 n.d. 0.305 n.d. 0.305 0.305 n.d. 0.305 0.3	0.336	
Control SA1 (3mM) SA2 (5mM)	LSD 0.05 PE PP PE PP PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 5 10 Ambient 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 5 10 5 10 5 5 5 10 5 5 5 10 5 5 5 5 5 5 5 5 5 5 5 5 5	Sa Storage The Second S 0.421 0.446 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48 0.39	re (ST) = 0 SAxPxS ⁷ 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467 0.308	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.354 0.382 0.404 0.243 0.411 0.421 0.283	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.331 0.304 0.369 n.d. 0.323 0.405	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	
Control SA1 (3mM) SA2 (5mM) Mean (T)	LSD 0.05 PE PP PE PP PE PP	5 10 Ambient	Sa Storage The Second S 0.421 0.446 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.368 0.246 0.382 0.404 0.243 0.411 0.421	Output 0.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.304 0.369 n.d. 0.323	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.283 0.305 n.d. 0.283 0.305 n.d. 0.305 n.d. 0.305 0.305 n.d. 0.305 0.3	0.336	
Control SA1 (3mM) SA2 (5mM)	LSD 0.05 PE PP PE PE PE PE PE PE PE PE (Polyethylen	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 6 10 Ambient 5 10 Ambient 10 Ambient 10 10 10 10 10 10 10 10 10 10	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48 0.39	re (ST) = 0 SAxPxS ⁷ 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467 0.308	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.354 0.382 0.404 0.243 0.411 0.421 0.283	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.331 0.304 0.369 n.d. 0.323 0.405	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	
Control SA1 (3mM) SA2 (5mM) Mean (T) Mean (P)	LSD 0.05 PE PP PE PE PE PE PE PE PP PE PE PP PE PP PE (Polyethylen PP (Polypropyle)	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 6 10 Ambient 5 10 Ambient 10 Ambient 10 10 10 10 10 10 10 10 10 10	Sa Storage The Second S 0.421 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.353	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48 0.39	re (ST) = 0 SAxPxS ⁷ 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467 0.308	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.354 0.382 0.404 0.243 0.411 0.421 0.283	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.331 0.304 0.369 n.d. 0.323 0.405	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	
Control SA1 (3mM) SA2 (5mM) Mean (T)	LSD 0.05 PE PP PE PE PE PE PE PE PE PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 6 10 Ambient 5 10 Ambient 10 Ambient 10 10 10 10 10 10 10 10 10 10	Sa Storage The Second S 0.421 0.446 0.446 0.443 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.353 0.371	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48 0.39	re (ST) = 0 SAxPxS ⁷ 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467 0.308	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.354 0.382 0.404 0.243 0.411 0.421 0.283	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.331 0.304 0.369 n.d. 0.323 0.405	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	
Control SA1 (3mM) SA2 (5mM) Mean (T) Mean (P)	LSD 0.05 PE PP PE PE PE PE PE PE PP PE PE PP PE PP PE (Polyethylen PP (Polypropyle)	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 6 10 Ambient 5 10 Ambient 10 Ambient 10 10 10 10 10 10 10 10 10 10	Sa Storage The Second S 0.421 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.353	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48 0.39	re (ST) = 0 SAxPxS ⁷ 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.281 0.408 0.426 0.327 0.428 0.467 0.308	.005 S 0.323 0.348 n. d. 0.342 0.348 n. d. 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.354 0.382 0.404 0.243 0.411 0.421 0.283	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.331 0.304 0.369 n.d. 0.323 0.405	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	
Control SA1 (3mM) SA2 (5mM) Mean (T) Mean (P)	LSD 0.05 PE PP PE PE PE PE PE PE PE PE	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 6 10 Ambient 5 10 Ambient 10 Ambient 10 10 10 10 10 10 10 10 10 10	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.351 0.353 0.371 0.361 0.339	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.363 0.441 0.468 0.368 0.463 0.48 0.39 0.398	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.408 0.408 0.408 0.426 0.327 0.428 0.467 0.308 0.357	.005 S 0.323 0.348 n. d. 0.342 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.368 0.224 0.354 0.354 0.361 0.382 0.404 0.243 0.411 0.421 0.283	O.266 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.331 0.304 0.369 n.d. 0.323 0.405	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	
Control SA1 (3mM) SA2 (5mM) Mean (T) Mean (P)	LSD 0.05 PE PP PE PE PE PE PE PP PE PC PC PC PC PC PC PC PC PC PC	5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 5 10 Ambient 6 10 Ambient 5 10 Ambient 10 Ambient 10 10 10 10 10 10 10 10 10 10	Sa Storage 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.421 0.446 0.446 0.446 0.446 0.446 0.446 0.446 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.483 0.351 0.353 0.371 0.361 0.339	e temperatu Season 0.401 0.38 0.301 0.389 0.401 0.323 0.39 0.404 0.347 0.424 0.438 0.363 0.441 0.468 0.368 0.463 0.48 0.39	re (ST) = 0 SAxPxS7 0.343 0.364 0.232 0.37 0.386 0.251 0.371 0.382 0.305 0.376 0.408 0.408 0.408 0.408 0.426 0.327 0.428 0.467 0.308 0.357	.005 S 0.323 0.348 n. d. 0.342 0.342 0.368 n.d. 0.349 0.354 0.354 0.354 0.354 0.354 0.368 0.224 0.354 0.354 0.361 0.382 0.404 0.243 0.411 0.421 0.283	Output Output 0.266 0.288 0.0 0.288 n.d. 0.305 0.322 n.d. 0.276 0.321 0.331 0.342 n.d. 0.3069 n.d. 0.323 0.405 n.d. 0.321 0.324	es (T) = 0.0 0.177 0.205 n.d. 0.242 0.28 n.d. 0.249 0.305 0.283 0.305 n.d. 0.28 0.329 n.d. 0.308 0.308 0.383 n.d.	0.336	

Table (5). Essential oil content as affected by salicylic acid, packing type, storage temperature during six storage times in the two seasons (2021-2022)

n. d. values not determined due to deterioration of basil, SA0= without salicylic acid (control), SA1=salicylic acid at rate 3mM, SA2=salicylic acid at rate 5mM, packing type (P) PE= low-density polyethylene, PP= polypropylene, Storage temperature (ST)= 5° C, 10° C and Ambient temperature, Storage time (T)= days after storage, 0 time, 2,4,6,8 and 10 days.

Since they are all monoterpenes, the other volatile substances discussed have the same biochemical route. Geranyl diphosphate (GDP) is the starting point for the synthesis of monoterpenes, which are created by the condensation of IPP and DMAPP, which are primarily synthesized in the plastid via the MEP pathway. Subsequently, GDP experiences many modifications from an extensive group of enzymes referred to as terpene synthases, resulting in the synthesis of distinct monoterpenes (**Dudareva** *et al.*, **2004**). On the other hand, eugenol is produced by the eugenol synthase enzyme by reducing a coniferyl alcohol ester. Eugenol is obtained from the amino acid phenylalanine through the phenylpropanoid the pathway. (Koeduka *et al.*, **2006**).

The loss of these volatile compounds during subsequent low-temperature storage is related to reduced expression levels of genes coding for important enzymes in the metabolic pathway. For instance, the expression of a linalool synthase gene coding for the enzyme responsible for the formation of linalool in a single-stage reaction from GDP was downregulated by chilling temperature in papaya fruit, resulting in impaired linalool production (**Gomes** *et al.*, **2016**). A significant drop in volatile concentrations at 5°C in basil was related to a decrease in the transcript abundance of genes encoding for products and enzymes necessary for volatile production, which resulted in a lower quality of flavor. (**Zhang** *et al.*, **2016**).

Similarly, after six days of storage at 5°C, basil leaves showed a decrease in estragole (methyl chavicol). Similar to eugenol, estragole is produced by adding a methyl group to chavicol by the phenylpropanoid pathway, starting with phenylalanine and being further converted by specific methyltransferase. (Lewinsohn *et al.*, 2000).

4. Conclusion

Chilling injury in basil can be appeared both by visible (browning and leaf discoloration) and invisible (loss of volatile compounds responsible for aroma and flavor) damage. When basil leaves are stored at temperatures well below the optimal temperature (12°C), chilling damage becomes more severe. It could be concluded that application of pre-harvest salicylic acid (SA) treatment at rate 5 mM was effectively able to delay CI (Chilling injury) symptom and prolong the shelf life of sweet basil stored in polypropylene bags at 5°C for 10 days.

Components	α	-pinen	e	r	nyrcen	e	f	8-pinen	e		Linalool	l	E	strago	le]	Eugenol	
			Storage times															
Treatments	0	4	10	0	4	10	0	4	10	0	4	10	0	4	10	0	4	10
PE+Co+5 °C	3.44	3.31	2.11	3.67	3.21	2.57	2.61	2.11	1.98	44.83	35.11	26.42	2.03	1.21	0.89	18.38	12.24	8.89
PE+Co+10°C	3.44	3.39	2.23	3.67	3.43	3.00	2.61	2.21	2.02	44.83	39.53	31.19	2.03	1.45	0.94	18.38	13.51	11.27
PE+Co+A	3.44	3.05	n.d.	3.67	3.17	n.d.	2.61	2.01	n.d.	44.83	22.89	n.d.	2.03	1.13	n.d.	18.38	12.76	n.d.
PP+Co+5 °C	3.44	3.34	2.45	3.67	3.56	2.69	2.61	2.37	2.01	44.83	35.32	28.17	2.03	1.24	0.93	18.38	13.03	9.37
PP+Co+10°C	3.44	3.4	2.57	3.67	3.49	3.33	2.61	2.56	2.29	44.83	40.71	32.44	2.03	1.35	1.27	18.38	14.57	12.36
PP+Co+A	3.44	3.14	n.d.	3.67	3.23	n.d.	2.61	2.13	n.d.	44.83	29.84	n.d.	2.03	1.21	n.d.	18.38	13.32	n.d.
PE+SA1+5 °C	3.78	3.51	2.25	3.71	3.28	2.63	2.73	2.34	2.13	45.37	35.61	30.11	2.11	1.35	1.03	19.09	14.03	9.77
PE+SA1+10°C	3.78	3.55	2.98	3.71	3.64	3.59	2.73	2.53	2.27	45.37	41.88	36.93	2.11	1.58	1.11	19.09	14.78	11.91
PE+SA1+A	3.78	3.23	n.d.	3.71	3.22	n.d.	2.73	2.19	n.d.	45.37	25.54	n.d.	2.11	1.29	n.d.	19.09	13.18	n.d.
PP+SA1+5 °C	3.78	3.58	2.55	3.71	3.53	3.09	2.73	2.48	2.21	45.37	36.78	29.32	2.11	1.44	1.15	19.09	14.24	10.61
PP+SA1+10°C	3.78	3.69	3.24	3.71	3.68	3.45	2.73	2.61	2.33	45.37	42.15	38.74	2.11	1.78	1.32	19.09	16.32	12.44
PP+SA1+A	3.78	3.35	n.d.	3.71	3.34	n.d.	2.73	2.26	n.d.	45.37	30.21	n.d.	2.11	1.32	n.d.	19.09	13.58	n.d.
PE+SA2+5 °C	3.82	3.62	2.69	3.94	3.58	3.32	2.76	2.42	2.18	46.13	39.02	30.18	2.35	1.68	1.12	19.52	14.33	12.94
PE+SA2+10°C	3.82	3.75	3.36	3.94	3.76	3.61	2.76	2.66	2.36	46.13	42.56	39.11	2.35	1.93	1.27	19.52	16.17	13.13
PE+SA2+A	3.82	3.43	n.d.	3.94	3.39	n.d.	2.76	2.27	n.d.	46.13	26.13	n.d.	2.35	1.33	n.d.	19.52	13.60	n.d.
PP+SA2+5 °C	3.82	3.65	2.59	3.94	3.66	3.49	2.76	2.61	2.54	46.13	41.61	40.28	2.35	1.75	1.22	19.52	15.45	15.09
PP+SA2+10°C	3.82	3.77	3.49	3.94	3.84	3.71	2.76	2.72	2.58	46.13	43.86	41.72	2.35	2.24	1.79	19.52	18.43	15.56
PP+SA2+A	3.82	3.41	n.d.	3.94	3.41	n.d.	2.76	2.3	n.d.	46.13	32.45	n.d.	2.35	1.32	n.d.	19.52	13.66	n.d.

	7 1 4 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 10 10 11 10 4			
- Table (6). V	olatiles components as affected	by salicylic acid, nacking fy	ne, storage temperature d	luring six storage times in the fi	rst season
	olumes components as anected	by suncyne actu, pacining ty	pe, storage temperature a	furing six scorage times in the h	i se seuson

SA2 A 3.82 5.41 n.d. 5.94 5.41 n.d. 2.70 2.3 n.d. 40.13 52.45 n.d. 2.55 1.52 n.d. 19.52 15.00 n. d. values not determined due to deterioration of basil, Co= without salicylic acid (control), SA1=salicylic acid at rate 3mM, SA2=salicylic acid at rate 5mM, packing type (P) PE= low-density polyethylene, PP= polypropylene, Storage temperature (ST)= 5° C, 10° C and Ambient temperature, Storage time (T)= days after storage, 0 time, 4 and 10 days.

References

Abbasi, N. A., Hafeez, S. and Tareen, M. J. (2010). Salicylic acid prolongs shelf life and improves quality of "Mari Delicia" peach fruit. Acta Hort., 880: 191-197.

Adams, R. P. (2007). In "Identification of Essential Oil Components by Gas Chromatography/mass Spectroscopy". 4th Edition. Allured, Carol Stream, Illinois and USA.

Abdel-Hamid, A. N. (2020). Changes in Post-Harvest Quality of Menthe and Sage fresh Cut Herbs Treated with Citric acid, Salicylic Acid and Chitosan under Cold storage. Middle East J. Agric. Res., 9(1): 134-148.

ASTA (1985). Official analytical methods of the American Spice Trade Association. 68 p.

Barakat, M.R.; Mohsen, A.T. and Mohamed, A.A. (2015). Effect of some natural oils and salicylic acid on fruit quality of Valencia orange during storage. J. Hort. Sci. Ornamen. Plants, 7, 66–70.

Barbosa, C.K.R; Fonseca, M.C.M. and Silva, T.P. (2016). Effect of hydro cooling, packaging, and cold storage on the post–harvest quality of peppermint (*Mentha piperita* L.). *Revista Brasileira de Plantas Medicinais*.18(1):248–255.

Begum, F. U.; Skinner, G.; Smieszek, S. P.; Budge, S.; Stead, A. D. and Devlin, P. F. (2023). Improved chilling tolerance in glasshouse-grown potted sweet basil by end-of-production, short-duration supplementary far red light. Front. Plant Sci. 14: 1-19. <u>https://doi.org/10.3389/fpls.2023.1239010.</u>

Brindisi, L., Arora, V., Kenigsbuch, D., Ward, D. L., Wyenandt, C. A., Dudai, N. (2021). Rapid screening methods to identify chilling tolerance in sweet basil (*Ocimum basilicum* L.). J. Medicinally Active Plants, 10 (1), 1–10. doi: 10.7275/2g05-ea63

Bottcher, H., Gunther, I. and Franke, R. (2001). Comparative studies in the postharvest responses of different medicinal and culinary herbs. J. Article; Conference-Paper, 6(3): 129-137.

Cantwell, M. I and Reid, M. S. (2002). Post-harvest handling systems: fresh herbs. Postharvest technol. for hort. crops. University of California Press, California, pp 327–331.

Cefola, M.; Amodio, M. L.; Cornacchia, R.; Rinaldi, R., Vanadia, S. and Colelli, G. (2009). Effect of atmosphere composition on quality of ready-to-use broccoli raab (*Brassica rapa* L.). J. Sci. Food Agric., 90, 789–797.

Chang, X.; Alderson, P. G.; Hollowood, T. A.; Hewson, L. and Wright, C. J. (2007). Flavour and aroma of fresh basil are affected by temperature. J. Sci. Food Agric., 87, 1381–1385. doi: 10.1002/jsfa.286

Curutchet, A.; Dellacassa, E.; Ringuelet, J. A.; Chaves, A. R. and Viña, S. Z. (2014). Nutritional and sensory quality during refrigerated storage of fresh-cut mints (*Mentha*×*piperita* and *M. spicata*). Food Chem., 143, 231–238. doi:10.1016/j.foodchem.2013.07.117.

Dudai, N., Nitzan, N. and Gonda, I. (2020). *Ocimum Basilicum* L. (Basil), Medicinal, Aromatic and Stimulant Plants. Handbook of Plant Breeding, pp. 377-405. 10.1007/978-3-030- 38792-1_10

Dudareva, N.; Pichersky, E. and Gershenzon, J. (2004). Biochemistry of plant volatiles. Plant Physiol., 135, 1893–1902. doi: 10.1104/pp.104.049981

Dos, S. N. L. B., Brunetti, C., Agati, G., Lo Iacono, C., Detti, C. and Giordani, E. (2020). Short-term pre-harvest UV-B aupplement enhances the polyphenol content and antioxidant capacity of *Ocimum basilicum* leaves during storage. Plants, 9 (6), 1-19. doi: 10.3390/plants9060797.

El-Moghazy, T. F. A. (2021). Effect of packaging and cold Storage on the quality of sweet basil Herb. Middle East J. Appl. Sci., 11(3): 625-636

Ferruzzi, M. G. and Schwartz S. (2001). Overview of Chlorophylls in Foods UNIT F4.1. In: Eds. Wrolstad, R. E. et al., Current Protocols in Food Analytical Chemistry.

Fratianni, F., Cefola, M., Pace, B., Cozzolino, R., De Giulio, B. and Cozzolino, A. (2017). Changes in visual quality, physiological and biochemical parameters assessed during the postharvest storage at chilling or non-chilling temperatures of three sweet basils (*Ocimum basilicum* L.) cultivars. Food Chem., 229, 752–760. doi: 10.1016/j. foodchem.2017.02.137.

Erogul, D. and Özsoydan, I. (2020). Effect of pre-harvest salicylic acid treatments on the quality and shelf life of the 'Cresthaven' peach cultivar. Folia Hort., 32(2): 221–227.

Gang, D. R.; Wang, J.; Dudareva, N.; Nam, K. H.; Simon, J. E.; Lewinsohn, E. and Pichersky, E. (2001). An investigation of the storage and biosynthesis of phenylpropenes in sweet basil. Plant physiology,125 (2):539-555.

Ghasemzadeh, A., Ashkani, S., Baghdadi, A., Pazoki, A., Jaafar, H. Z. and Rahmat, A. (2016). Improvement in flavonoids and phenolic acids production and pharmaceutical quality of sweet basil (*Ocimum basilicum* L.) by ultraviolet-B irradiation. Molecules, 21 (9), 1-15. doi: 10.3390/molecules21091203

Gomes, B. L.; Fabi, J. P. and Purgatto, E. (2016). Cold storage affects the volatile profile and expression of a putative linalool synthase of papaya fruit. Food Res. Int., 89, 654–660. doi: 10.1016/j.foodres.2016.09.025

Gomez, K.A. and A.A. Gomez (1984). Statistical Procedures for Agricultural Research, 2nd Edition. John Wily and Sons, New York, 680 pp.

Hassan, F. A. S., and Mahfouz, S. A. (2010). Effect of 1-methylcyclopropene (1-MCP) treatment on sweet basil leaf senescence and ethylene production during shelf-life. Postharvest Biol. Technol., 55 (1), 61–65. doi: 10.1016/j.postharvbio.2009.07.008.

Jackson, M.L. (1973). Soil Chemical Analysis Constable Co. London. Prentic Hall Inc., Englewood Coifs New Jersey.

Julio, L. and Cantwell, M. (1997). Postharvest Physiology and Quality of Cilantro (*Coriandrum sativum* L.). Hort.Science, 32(1): 104-107.

Kader, A.A. (1986). Biochemical and physiological basis for effects of controlled and modified atmospheres on fruits and vegetables. Food Technology, 40(5), 99–100, 102–104.

Koeduka, T., Fridman, E., Gang, D. R., Vassão, D. G., Jackson, B. L. and Kish, C. M. (2006). Eugenol and isoeugenol, characteristic aromatic constituents of spices, are biosynthesized via reduction of a coniferyl alcohol ester. Proc. Natl. Acad. Sci. 103, 10128–10133. doi: 10.1073/pnas.0603732103.

Koyuncu, M. A., Erbas, D., Onursal, C. E., Secmen, T., Guneyli, A. and Seda Sevinc Uzumcu, S. S. (2019). Postharvest treatments of salicylic acid, oxalic acid and putrescine influences bioactive compounds and quality of pomegranate during controlled atmosphere storage. J Food Sci Technol., 56(1):350–359.

Kazemi, M.; Aran, M. and Zamani. S. (2011). Effects of calcium chloride and salicylic acid treatment on quality characteristics of kiwifruit (*Actinidia deliciosa* cv. Hayward) during storage. Amer. J. Plant Physiol., 6: 183-189.

Lee, J. H. (2008). Extending shelf-life of leaf lettuce using active packaging. J Food Tech., 6:14–19.

Lee, J. S.; Lee, H. E.; Lee, Y. S. and Chun, C. (2008). Effect of packaging methods on the quality of leaf lettuce. Korean J. Food Preserv., 15:630–634.

Lewinsohn, E., Ziv-Raz, I., Dudai, I. N., Tadmor, Y. and Lastochkin, E. (2000). Biosynthesis of estragole and methyl-eugenol in sweet basil (*Ocimum basilicum* L). Developmental and chemotypic association of allylphenol O-methyltransferase activities. Plant Sci., 7;160(1):27-35.

Li, N.; Barbara, L. P.; Liu, D. R. and Autar, K. M. (1992). Accumulation of wound-inducible ACC synthase transcript in tomato fruit is inhibited by salicylic acid and polyamines. Plant Molec. Biol., 18: 477-487.

Luo, Z., Chen, C. and Xie, J. (2011). Effect of salicylic acid treatment on alleviating postharvest chilling injury of 'Qingnai' plum fruit. Postharvest Biol. Technol., 62: 115-120.

Mangaraj, S.; Goswami, T. K. and Mahajan, P. V. (2009). Applications of films for modified atmosphere packaging of fruits and vegetables: a review. Food Eng. Rev., 1:133–158. https://doi.org/10.1007/s12393-009-9007-3.

Martínez, J. A., Chiesa, A., Tovar, F. and Francisco, A. (2005). Respiration rate and ethylene production of fresh cut lettuce as affected by cutting grade. Agric. Food Sci., 14:354-361.

Matthews, J.; Melendez, M.; Simon, J., and Wyenandt, A. (2018). Ultra-niche crops series: fresh-market basil (Rutgers Coop. Ext). Available at: <u>https://njaes.rutgers.edu/</u> fs1279/ (Accessed 9.9.22).

Masoud S. Z. (2011). Effect of modified atmosphere packaging on quality changes of fresh parsley, spinach and dill. 2nd International Conference on Environmental Science and Technology. IPCBEE vol.6 (2011) © IACSIT Press, Singapore.

Nand, V. and Yadav, K. C. (2014). Effect of Different Packaging Material on Quality of Green Dill (Sowa) (*Anethum graveolens* L.) Under Storage Condition. Environment & Ecology, 32 (4A): 1583—1587.

Patel, M.; Lee, R.; Merchant, E. V.; Juliani, H. R.; Simon, J. E. and Tepper, B. J. (2021). Descriptive aroma profiles of fresh sweet basil cultivars (*Ocimum* spp.): relationship to volatile chemical composition. J. Food Sci., 86, 3228–3239. doi: 10.1111/1750-3841.15797

Radwan, D. E. M.; Lu, G.; Fayez, K. A. and Mahmoud, S. Y. (2008). Protective action of salicylic acid against bean yellow mosaic virus infection in *Vicia faba* leaves. J. Plant Physiol., 165: 845-857.

Rashed N. M. M. and Younis, S. I. (2010). Effect of Different Package Film on the Quality of Fresh *Origanum Syriacum*, L. Herb. J. of App. Sci. Res., 6(1): 6-12.

Razavi, F., Hajilous, J. Ehgan, G. Hassani, R. N. and Turchi, H. M. (2014). Enhancement of postharvest quality of peach fruit by salicylic acid treatment. Inter. J. Biosci., 4: 177-184.

Renhua H., Renxue X., Yunmel L., Liming H., Yongjie X. (2008). Effect of Pre-Harvest SA Spray Treatment on Post-Harvest Antioxidant in the Pulp and Peel of 'Cara Cara' Navel Orange (*Citrus sinenisis* L. Osbeck) J. Sci. Food Agric., 88:229–236.

Rodeo, A. J. D. and Mitcham, E. J. (2023). Chilling temperatures and controlled atmospheres alter key volatile compounds implicated in basil aroma and flavor. Front. Plant Sci., 14. doi: 10.3389/fpls.2023.1218734.

Sakaldas, M. and K. Kays (2010). Biochemical and quality parameters changes of green sweet bell peppers as affected by different postharvest treatments. Journal of Biotecnology, 9(48): 8174-8181.

Sakaldaş, M., Aslım, A. S., Kuzucu, C. O. and Kaynaş, K. (2010). The effects of modified atmosphere packaging and storage temperature on quality and biochemical properties of dill (*Anethum graveolens*) leaves. Journal of Food, Agriculture and Environment, 8 (3 and 4): 21-25.

Shan, B., Cai, Y. Z., Sun, M. and Corke, H. (2005). Antioxidant Capacity of 26 Spice Extracts and Characterization of Their Phenolic Constituents. Journal of Agricultural and Food Chemistry, 53, 20: 7749-7759.

Shehata, S. A.; Abdeldaym, E. A.; Ali, M. R.; Mohamed, R. M.; Bob, R. I. and Abdelgawad, K. F. (2020). Effect of Some Citrus Essential Oils on Post-Harvest Shelf Life and Physicochemical Quality of Strawberries during Cold Storage. Agronomy,10, 1466: 1-29.

Sharma, R.; Bhatia, S. and Kaur, P. (2018). Influence of packaging and storage conditions on biochemical quality and enzymatic activity in relation to shelf life enhancement of fresh basil leaf. J Food Sci Technol., 55(8):3199–3211.

Spinardi, A. and Ferrante, A. (2012). Effect of storage temperature on quality changes of minimally processed baby lettuce. Journal of Food, Agriculture and Environment,10 (1): 38-42.

Silva, F.; Santos, R. H. S.; Andrade, N. J.; Barbosa, L. C. A.; Casali, V. W. D.; Lima, R. R. and Passarinho, R. V. M. (2005). Basil conservation affected by cropping season, harvest time and storage period. Pesquisa Agropecuaria Brasileira, 40: 323-328.

Supapvanich, S. (2015). Effects of salicylic acid incorporated with lukewarm water dips on the quality and bioactive compounds of rambutan fruit (*Nephelium lappaceum* L.). CMU. J. Nat. Sci., 14(1): 23-27.

Suamuang, N., Poolpukdee, A., Herkhuntod, W., Pholpakdee, R., Intarated, S. and Supapvanich, S. (2016). Chilling injury alleviation of holy basil by preharvest salicylic acid and oxalic acid application. The 5th Burapha University International Conference "Harmonization of Knowledge towards the Betterment of Society", 158-164.

Supapvanich, S. and Promyou, S. (2013). Effeciency of salicylic acid application on postharvest perishable crops. In: Hayat, S., & Alyemei, A. A. M. N. (Eds), Salicylic acid: Plant growth and development, Springer, New York USA. Pp. 339-355.

Supapvanich, S., Arkajak, R. and Yalai, K. (2012). Maintenance of postharvest quality and bioactive compounds of fresh-cut leaf bush (*Saurapus androgynous* L. Merr.) through hot CaCl2 dips. Inter. J. Food Sci. Technol., 47: 2662-2670

Supapvanich, S.; Phonpakdee, R. and Wongsuwan, P. (2015). Chilling injury alleviation and quality maintenance of lemon basil by preharvest salicylic acid treatment. Emirates Journal of Food and Agriculture, 27(11): 801-807. doi: 10.9755/ejfa.2015-09-572.

Takwa, S., Caleja, C., Barreira, J. C. M., Soković, M., Achour, L. and Barros, L. (2018). *Arbutus unedo* L. and *Ocimum basilicum* L. as sources of natural preservatives for food industry: A case study using loaf bread. LWT 88, 47–55. doi: 10.1016/j.lwt.2017.09.041.

Wei, Y.; Liu, Z.; Su, Y.; Liu, D. and Ye. X. (2011). Effect of salicylic acid treatment on postharvest quality, antioxidant activities, and free polyamines of asparagus. J. Food Sci., 76: 126-132.

Wongshere, T., Ketsa, S., and van Doorn, W. G. (2009). The relationship between chilling injury and membrane damage in lemon basil (*Ocimum×citriodourum*) leaves. Postharvest Biol. Technol., 51, 91–96. doi: 10.1016/j.postharvbio.2008.05.015

Zhang, B., Tieman, D. M., Jiao, C., Xu, Y., Chen, K. and Fei, Z. (2016). Chilling induced tomato flavor loss is associated with altered volatile synthesis and transient changes in DNA methylation. Proc. Natl. Acad. Sci., 113, 12580–12585. doi: 10.1073/pnas.1613910113

Zhang, Y. and Zhang. Q. (2004). Effects of polyamines and salicylic acid postharvest storage of 'Ponkan' mandarin. Acta Hort., 632: 317-32.

© The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise