

Article

Response of Salt-affected Sage (Salvia officinalis L.) to Biochar Amendment

Seham, M. A. El-Gamal¹; El-Metwally M. Selim²; Mahmoud M. Shalan¹; Ahmed A. A. Dewidar¹ and Amany E. El-Sonbaty³

Future Science Association

Available online free at www.futurejournals.org

Print ISSN: 2692-5826

Online ISSN: 2692-5834

DOI: 10.37229/fsa.fjh.2023.12.29

Received: 25 November 2023 Accepted: 20 December 2023 Published: 29 December 2023

Publisher's Note: FA stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses /by/4.0/). ¹Medicinal and Aromatic Plants Research Department, Horticulture Research Institute, Agricultural Research Center, Giza 12619, **Egypt**

²Soil and Water Department., Faculty of Agriculture, Damietta University, 34517, New Damietta City, **Egypt**

³Soil, Water and Environment Research Institute, Agricultural Research Center, Giza, 12619, **Egypt**

*Corresponding author: s_elgamal99@gmail.com

Abstract: Due to the limited availability of fresh water, it is imperative to find methods for balancing the population's resource management and utilize salt water instead of fresh water while irrigating plants. Sage plant is one of the most important medicinal plants suitable for expanding their cultivation in Salt-affected new reclaimed lands. Consequently, a field trial during two consecutive seasons of 2019 and 2020 was implemented under a split-plot design, aiming to assess the role of biochar addition $(0, 2, 4 \text{ ton fed}^{-1})$ in mitigating the drastic effect of saline water [450 (as control), 1000, 2000, 3000, and 4000 mgL⁻¹]. Various parameters, including plant height, number of branches, dry weight, essential oil percentage and yield as well as chlorophyll a and b, carotenoids, N, P, K, and carbohydrates were determined. Additionally, indicators of plant tolerance to salinity, such as proline and MDA (malondialdehyde) were also determined. The results indicate a decline in growth traits, photosynthetic pigments, and chemical constituents with an increase in the salinity level of irrigation water. Conversely, the values of proline and MDA exhibited an upward trend as the salinity of irrigation water increased. On the other hand, the addition of biochar enhanced the performance of sage under salinity conditions. The highest values for the studied traits (except for proline and MDA which exhibited the opposite trend) were observed with the highest biochar rate (4 ton fed⁻¹), followed by plants treated with 2 ton fed⁻¹, and finally, the control treatment. These findings not only contribute to our understanding of sage plant adaptation to saline conditions but also highlight the potential of biochar as a beneficial amendment in enhancing plant performance under salinity stress.

Key words: Salinity, Biochar, Proline, Malondialdehyde, Sage, Yield.

INTRODUCTION

The world is currently grappling with a critical challenge the scarcity of freshwater resources. As the world's population continues to grow, it is becoming increasingly important to strike a careful balance between the growing population and the wise use of limited resources including saline water (**Elsherpiny**, **2023**). This necessity, however, demands a comprehensive understanding of plant responses to salinity and innovative strategies to enhance their tolerance (**Liu**, **2017**).

Medicinal and aromatic plants, being integral to human sustenance, stand at the forefront of this challenge. Exploring the potential of saltwater irrigation for these crops could significantly contribute to water conservation and sustainable agriculture. This, however, necessitates thorough research and investigation to unravel the intricacies of plant adaptation to varying salinity levels (Abd–Elhady, 2023).

Sage, or *Salvia officinalis* L., is a vibrant shrub in the *Lamiaceae* family. This plant originated in the Middle East and the Mediterranean regions, and it has since spread to various parts of the world. Sage has been used extensively to treat a variety of illnesses including cancer due to its flavoring qualities (Valiyari *et al.*, 2013; Ghorbani and Esmaeilizadeh, 2017).

Furthermore, it contains a multitude of beneficial secondary metabolites that fall into different chemical classes, including phenolic derivatives, terpenoid compounds, and essential oils (Arikat *et al.*, 2004). Furthermore, sage extract analysis revealed a number of biological activities, including the capacity to prevent neurovegetative illnesses and exhibit anti-inflammatory, anti-microbial, hypoglycemic, and anti-diabetic properties (Akhondzadeh *et al.*, 2003 and Garcia *et al.*, 2016). In contemporary times, it continues to play a significant role in the production of various medical and pharmaceutical preparations (El-Feky and Aboulthana, 2016).

One innovative approach for raising plant tolerance to salinity is the incorporation of biochar derived from agricultural residues with soil. Biochar, a carbon-rich material produced through the pyrolysis of organic matter, has demonstrated its prowess in enhancing soil properties and plant performance. Specifically, biochar is hypothesized to play a pivotal role in mitigating salinity stress. Understanding the interaction between biochar and sage plants under varying salinity conditions can unveil novel pathways for sustainable agriculture in arid and saline-affected regions (**Patel** *et al.* **2017**).

Biochar, when incorporated into soil, acts as a stable carbon sink, influencing soil structure, nutrient availability, and water retention. Its porous structure and high surface area contribute to enhanced water retention, reducing the impact of salt stress on plants. (Farooq et al., 2020). Biochar serves as a valuable amendment in mitigating the detrimental effects of salinity in irrigation water by functioning as a versatile soil conditioner. Its high surface area facilitates ion exchange, aiding in nutrient retention and preventing the uptake of toxic ions by plant roots (Patel et al., 2017). The porous structure enhances water holding capacity, providing a consistent water supply and reducing the risk of water stress in saline environments. Improved soil structure and aeration promote root growth, while the stimulation of microbial activity enhances nutrient cycling and overall soil fertility (Akhtar et al., 2015).

Thus, the main objective of this research work was to assess sage plant responses to salinity stress and investigate the salinity-alleviating potential of biochar and its impacts on sage morphological, biochemical, and physiological characteristics. By expanding our understanding of these complex interactions, we pave the way for sustainable and resilient cultivation practices that are paramount in the face of escalating water scarcity and soil salinity concerns. This is particularly crucial in the context of reclaiming and cultivating lands that face salinity challenges, offering a potential solution to regions struggling with water scarcity and soil salinity.

MATERIAL AND METHODS

A field experiment was undertaken during two consecutive seasons of 2019 and 2020 at a private farm, El-Serw City (31_14019.2100 N, 31_39013.6400 E; 16 m ASL), Damietta, Egypt.

Experimental design

A split-plot design with three replicates assessed the tolerance of sage plants to saline water (S1= 450 (as control), S2= 1000, S3= 2000, S4= 3000, and S5= 4000 mgL⁻¹) as the primary factor by biochar

application (B0= 0, B1= 2, B2= 4 ton fed⁻¹) to enhance sage plant tolerance to salinity as the sub-main factor. Biochar rates were added to the experimental soil during the field preparation.

Soil sampling

As part of routine procedures, a soil sample was collected before the transplantation process at a depth of 0.0-30.0 cm. Subsequently, the analysis of the soil sample was conducted according to the method outlined by **Smith and Mullins (1991)**, as the characteristics of the soil are detailed in Table 1. On the other hand, the experimental soil samples after the first season were collected after the second harvest at a depth of 0.0-30.0 cm. and their characteristics are detailed in Table 2.

Biochar properties

Biochar preparation involved utilizing plant residues, specifically rice and wheat straw, soybean, and maize stover. This process was carried out at a temperature range of 400-500 °C for a duration of 30 minutes without the presence of oxygen, following the methodology outlined by **Wang and Wang (2019).** The characteristics of the studied biochar are detailed in Table 2. The analysis of the biochar was conducted following the procedures outlined by **Tandon (2005).**

Preparation of saline irrigation water

To achieve the desired salinity levels in irrigation water, seawater and various dilutions with tap water were employed. The attributes of the initial seawater are outlined in Table 3. The analysis of the tested seawater was carried out in accordance with the procedures specified by **Tandon (2005)**.

Properties a	nd units	Values
pH *		8.130
EC dSm ^{-1 **}		1.750
OM %		1.120
Water holding capacity %		22.31
	Coarse sand	8.1300
Machanical analysis 0/	Fine sand	41.470
Mechanical analysis %	Silt	29.160
	Clay	21.240
Texture class		Sandy clay loam
	Nitrogen	38.17
Available Nutrients (mgKg ⁻¹)	Phosphorus	6.020
(mgrxg ⁻)	Potassium	193.3

Table 1. Properties of the experimental soil before transplantation

Table (2). Properties of biochar prepared

Properties and units	Values				
Cations exchange capacity, Cmol kg ⁻¹	69.73				
рН	8.79				
EC, dSm ⁻¹	3.16				
Organic carbon, %	48.63				
Total nitrogen,%	1.14				
Total phosphorus,%	0.59				
Total potassium,%	0.63				

Properties and units	Values
pH	7.700
EC, mg L ⁻¹	39200
Ca++, meq L-1	3.300
Mg ⁺⁺ , meq L ⁻¹	139.0
Na ⁺ , meq L ⁻¹	500.0
Cl ⁻ , meq L ⁻¹	590.0
SO4-, meq L-1	16.00

Table (3). Characteristics of the initial seawater

Experimental set up

Seeds of the common sage variety of sage were acquired from the Medicinal and Aromatic Department, Horticulture Research Institute (HRI). Initially, sage seeds were planted in nursery beds on November 15 of each season under investigation. Once the seedlings reached a height of 10-15 cm, they were transplanted to the field on March 15 of each season, with a spacing of 30 cm between the plants in the presence of freshwater. Three days post-planting, the soil was lightly irrigated for experimental stabilization of the seedlings. Biochar was applied one week before the transplanting process, adhering to the specified treatments. The studied irrigation treatments commenced from the second irrigation event after transplanting. Ammonium sulphate, (33.5% N) was added at a rate of 300 Kg per feddan via two equal doses; the first was added after one month from transplanting, while the second dose was added after the first cut. Calcium superphosphate (6.7% P) was incorporated at a rate of 200 Kg per feddan during soil preparation. Also, organic fertilizer was applied at a rate of 5 ton compost per feddan before the seedling date throughout soil preparation. Potassium as potassium sulfate (39.8% K) was added at a rate of 100 Kg per feddan in two equal doses; each K dose was added at one week after nitrogen dose addition. It is noteworthy that the experimental subplot area measured 9 m², consisting of three rows (each 3 meters in length and 60 cm in width). The separation between the main treatments was maintained at 3 meters.

Cut practices

Harvesting practices involved two cuts in each of the studied seasons. The initial cut was performed on June 15, and the subsequent cut on September 15 of each season.

Determination of essential oil percentage constituents of sage herb

Sage air dry herb samples (100g/sample) were hydro-distillation for 3 hours using a Clevenger-type distillation apparatus according to Guenther, (1972) to determine volatile oil percentage.

Essential oil components

The Gas Chromatograph of the second season 1st cut oil selected samples was done at the Laboratory of Medicinal and Aromatic Plants Research Dept., (HRI, ARC) using DsChrom 6200 Gas Chromatograph equipped with a flame ionization detector for separation of volatile oil constituents. The analysis conditions were as follows: -The chromatograph apparatus was fitted with capillary column BPX-5, 5% phenyl (equiv.) polysillphenylene-siloxane 30m x 0.25mm ID x 0.25µm film.

The temperature program ramp increase with a rate of 10° C / min from 70° to 200° C. Flow rates of gases were nitrogen at 1 ml / min, hydrogen at 30 ml / min and 330 ml /min for air. Detector and injector temperatures were 300° C and 250° C, respectively. The obtained chromatogram and report of GC analysis for each sample were analyzed to calculate the percentage of main components of volatile oil.

Measurement traits

Measurements and determination of attributes detailed in Table 4 were carried out on five randomly selected plants at both cut times.

Measurements	Methods and formula	References						
	Growth criteria							
Plant height (cm), No. of branches plant ⁻¹ , fresh and dry weights (g plant ⁻¹ ¹ & ton fed ⁻¹ for each cut)	Manually and visually							
Photosynthetic pigments								
Chlorophyll a, b and total as well as carotene(mg g ⁻¹ F.W)	80% Acetone, spectrophotometrically	Rajput and Patil, (2017)						
	Indicators of oxidative stress							
Proline (µmol.g ⁻¹)	Toluene fraction, spectrophotometrically	Teklić <i>et al.</i> (2010)						
Malondialdehyde (MDA, biomarker of lipid peroxidation, µmol.g ⁻¹)	Spectrophotometrically	Davey et al. (2005)						
	Leaf chemical constituents							
Digesting the plant samples	Mixed of HClO ₄ + H ₂ SO ₄	Peterburgski (1968)						
N, P, K (%)	Micro-kjeldahl, spectrophotometrically and flame photometer, respectively	Walinga et al. (2013)						
Carbohydrates(%) and oil (% & ml plant-1& Kg fed ⁻¹ for each cut)		A.O.A.C. (2000)						

Table (4). Methods, formula, and references of measurements

Statistical analysis

The statistical analysis of the acquired data was carried out using CoStat version 6.303, copyrighted (1998-2004). The methods employed for the analysis were in accordance with the guidelines provided by Gomez and Gomez (1984).

RESULTS AND DISCUSSION

1. Growth criteria and photosynthetic pigments

Table 5 presents the impact of irrigation water salinity treatments and biochar soil addition on growth criteria, including plant height (cm), No. of branches plant⁻¹, fresh and dry weights (g plant⁻¹& ton fed⁻¹ for each cut) for the first cut during both study seasons. Similarly, Table 6 displays the corresponding data for the second cut. Additionally, Tables 7 and 8 outline the effects of the studied treatments on photosynthetic pigments, including chlorophyll a, b, total, and carotene (mg g⁻¹ in fresh weight) for the first and second cuts, respectively.

The findings reveal a gradual decrease in growth traits and photosynthetic pigments with an elevation in the salinity level of irrigation water from 450 to 4000 mgL⁻¹. Specifically, the highest values for all the mentioned traits were observed in plants irrigated with fresh water (EC value=450mgL⁻¹). On the other hand, plants cultivated in soil treated with 4 tons of biochar per fed exhibited the highest values,

followed by those treated with 2 tons of biochar per fed. In contrast, the control group, lacking biochar treatment, exhibited the lowest values. Generally, it can be noticed that the incorporation of biochar proved advantageous in enhancing the overall performance of sage under varying salinity degrees in irrigation water, ranging from 1000 to 4000 mgL⁻¹. The same trend was found for both cuts as well as for both studied seasons.

Increased salinity levels in irrigation water can induce osmotic stress in sage plants. The heightened concentration of salts in the soil diminishes water potential, rendering water absorption more challenging for the plants. Consequently, this difficulty in water uptake impacts crucial physiological processes. The imbalance of ions induced by salinity, particularly the excessive accumulation of sodium ions (Na⁺) and chloride ions (Cl⁻), disrupts the regular uptake of essential nutrients by sage plants (**Patel** *et al.*, **2017**). This disruption negatively affects nutrient transport and interferes with vital metabolic functions. Accumulated sodium ions in plant tissues interfere with enzymatic activities, protein synthesis, and overall cellular functions in sage plants. Additionally, salinity stress often leads to a reduction in chlorophyll content, impacting the photosynthesis process. This diminished photosynthetic activity results in decreased plant growth, yield, and overall productivity (**Farooq** *et al.*, **2020**).

Biochar's porous structure enhances soil water retention, helping to counteract the osmotic stress caused by high salinity. This increased water holding capacity ensures a more stable water supply for sage plants (Patel et al., 2017). Biochar possesses a high ion exchange capacity, enabling it to hold onto cations and anions, preventing their harmful accumulation in plant tissues. Biochar application can improve nutrient availability in the soil. Biochar fosters a favorable environment for beneficial soil microorganisms, which plays a crucial role in nutrient cycling and can contribute to mitigating the negative effects of salinity on sage plants. Biochar's ability to improve soil structure and increase organic matter content can contribute to a healthier soil environment, aiding in the reduction of oxidative stress in sage plants. In the same line, Akhtar et al., 2015 on potato, found that increasing salinity levels resulted in significant reductions in shoot biomass, root length and volume as well as tuber yield. They also clarified that, the addition of biochar can significantly mitigate salinity stress on reductions of photosynthetic rate and midday leaf water potential because biochar increased photosynthetic rate and midday leaf water potential (Akhtar et al., 2015).

In summary, biochar acts as a multifaceted soil amendment by addressing the harmful effects of salinity on sage. Its water retention, ion exchange, and nutrient-enhancing capabilities contribute to raising the plant's tolerance to salinity, promoting overall resilience and sustainable cultivation in saline-affected environments.

1 st cut											
Troots	nonte	Plant 1	height, m	No. of b pla	ranches nt ⁻¹	Fresh w pla	veight, g nt ⁻¹	Dry wo pla	eight, g nt ⁻¹	Dry weig cut ⁻¹	ht, ton 1 st fed ⁻¹
ITeath	lients	1 st season	2 nd	1 st season	2 nd season	1 st season	2 nd	1 st season	2 nd	1 st season	2 nd
		scuson	scuson	Main fa	ctor: Salini	ty of irrigat	tion water	scuson	scuson	scuson	scuson
S1: 450 m	ng L ⁻¹	39.06a	40.40a	14.22a	16.00a	166.06a	170.41a	48.53a	49.61a	1.068a	1.091a
S ₂ : 1000	mg L ⁻¹	37.52b	38.94b	12.89b	14.78b	152.07b	153.59b	43.59b	44.49b	0.959b	0.979b
S3: 2000	mg L ⁻¹	35.34c	36.60c	11.67c	12.67c	133.88c	136.61c	37.39c	38.16c	0.823c	0.840c
S4: 3000	mg L ⁻¹	33.64d	34.88d	10.44d	11.56d	120.11d	121.48d	32.44d	33.15d	0.714d	0.729d
S5: 4000	mg L ⁻¹	31.52e	32.67e	8.67e	9.44e	96.70e	98.58e	25.51e	26.12e	0.561e	0.575e
LSD a	t 5%	0.23	0.38	0.82	0.80	0.42	0.28	0.10	0.10	0.002	0.002
				:	Sub main fa	ctor: Bioch	ar				
B ₀ : With biochar	out	33.87c	35.14c	10.47c	11.60b	120.47c	122.73c	32.59c	33.27c	0.717c	0.732c
B1: Biocl ton fed ⁻¹	har (2)	35.83b	37.05b	11.87b	13.33a	137.22b	139.44b	39.16b	39.84b	0.862b	0.877b
B ₂ : Bioc ton fed ⁻¹	har (4)	36.56a	37.91a	12.40a	13.73a	143.60a	146.24a	40.72a	41.80a	0.896a	0.920a
LSD a	t 5%	0.36	0.36	0.48	0.48	0.48	0.45	0.14	0.13	0.003	0.003
					Inter	action					
	B ₀	37.40de	38.71cd	13.00cd	15.00b	152.21e	156.34e	43.76e	44.76e	0.963e	0.985e
S_1	B 1	39.50ab	40.90ab	14.67ab	16.33a	169.86b	174.68b	49.76b	50.88b	1.095b	1.119d
	B ₂	40.27a	41.59a	15.00a	16.67a	176.10a	180.22a	52.07a	53.19a	1.146a	1.170b
	\mathbf{B}_{0}	35.60g	36.99f	11.67ef	12.67cde	133.71h	136.06h	37.20h	37.92h	0.818h	0.834h
S_2	B ₁	38.17cd	39.44c	13.33cd	15.67ab	158.00d	158.10d	45.76d	46.72d	1.007d	1.028d
	\mathbf{B}_2	38.80bc	40.40b	13.67bc	16.00ab	164.50c	166.62c	47.80c	48.82c	1.052c	1.074c
	\mathbf{B}_{0}	33.17ij	34.42hi	10.00h	11.00fg	116.04k	118.22k	31.19k	31.87k	0.686k	0.701k
S_3	\mathbf{B}_1	36.10fg	37.39ef	12.33def	13.33cd	139.74g	142.41g	39.41g	40.22g	0.867g	0.885g
	\mathbf{B}_2	36.77ef	37.99de	12.67cde	13.67c	145.87f	149.21f	41.56f	42.40f	0.914f	0.933f
	\mathbf{B}_0	32.37jk	33.61ij	9.67hi	10.33gh	110.321	111.321	28.991	29.491	0.6381	0.6491
S 4	B 1	33.90hi	35.09h	10.33gh	12.00ef	121.90j	123.40j	33.13j	33.79j	0.729j	0.743j
	\mathbf{B}_2	34.67h	35.95g	11.33fg	12.33de	128.12i	129.72i	35.18i	36.16i	0.774i	0.796i
	Bo	30.801	31.98k	8.00j	9.00i	90.090	91.710	21.810	22.320	0.4800	0.4910
S_5	B ₁	31.471	32.42k	8.67ij	9.33hi	96.61n	98.61n	27.76m	27.61n	0.611n	0.607n
	B ₂	32.30k	33.61j	9.33hi	10.00ghi	103.39m	105.42m	26.96n	28.43m	0.593m	0.625m
LSD a	t 5%	0.81	0.81	1.08	1.08	1.07	1.01	0.30	0.30	0.007	0.006

Table (5). Effect of irrigation water salinity and biochar rates on growth parameters of sage plants at the first cut during the two successive seasons (2019-2020)

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1= 450, S2= 1000, S3= 2000, S4= 3000, and S5= 4000 mgL^{-1} and B0= 0, B1= 2, B2= 4 ton fed⁻¹

2 nd cut											
Turatur		Plant C	height, m	No. of b pla	ranches nt ⁻¹	Fresh w pla	veight, g nt ⁻¹	Dry wo	eight, g nt ⁻¹	Dry weig cut ²	ht, ton 2 nd fed ⁻¹
Treatin	ients	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season
Main factor: Salinity of irrigation water											
S1: 450 m	g L-1	45.41a	47.09a	25.22a	25.67a	216.51a	219.98a	62.68a	63.87a	1.379a	1.405a
S2: 1000 1	mg L ⁻¹	43.82b	45.31b	24.11b	24.56b	200.21b	204.30b	56.81b	58.26b	1.250b	1.282b
S3: 2000 1	mg L ⁻¹	41.73c	43.16c	22.89c	21.78c	179.19c	181.24c	49.24c	50.32c	1.083c	1.107c
S4: 3000 1	mg L ⁻¹	40.08d	41.49d	21.78d	20.67d	163.02d	166.16d	43.01d	43.80d	0.946d	0.964d
S5: 4000 1	mg L ⁻¹	37.21e	38.64e	17.44e	18.56e	135.92e	137.81e	33.73e	34.55e	0.742e	0.760e
LSD at	5%	0.42	0.71	1.11	1.09	0.38	0.42	0.09	0.14	0.002	0.003
				Sub	main facto	r: Biochar a	addition				
B ₀ : Witho biochar	out	40.14c	41.61c	21.13c	20.67c	163.31c	165.91c	43.50c	44.46c	0.957c	0.978c
B1: Biochaton fed ⁻¹)	ar (2	42.02b	43.55b	22.53b	22.80b	183.23b	186.08b	50.64b	51.74b	1.114b	1.138b
B ₂ : Bioch ton fed ⁻¹)	nar (4	42.79a	44.26a	23.20a	23.27a	190.37a	193.70a	53.14a	54.28a	1.169a	1.194a
LSD at	5%	0.41	0.37	0.44	0.43	0.60	0.56	0.17	0.17	0.004	0.004
					Inte	eraction					
	Bo	43.90de	45.67d	24.33cd	24.00c	200.12e	203.75e	56.98e	58.04e	1.253e	1.277e
S_1	B 1	45.77ab	47.39ab	25.33ab	26.33a	221.18b	224.40b	64.43b	65.64b	1.417b	1.444b
	B ₂	46.57a	48.19a	26.00a	26.67a	228.21a	231.79a	66.63a	67.94a	1.466a	1.495a
	\mathbf{B}_{0}	41.82gh	43.13f	22.67fg	22.33de	179.32h	182.49h	48.66h	50.01h	1.071h	1.100h
S_2	B ₁	44.56cd	46.09cd	24.67bc	25.33b	207.07d	211.03d	59.63d	61.11d	1.312d	1.344d
	B ₂	45.08bc	46.72bc	25.00bc	26.00ab	214.24c	219.38c	62.16c	63.67c	1.367c	1.401c
	\mathbf{B}_{0}	39.61ij	40.97hi	21.67hi	19.67g	158.36k	159.76k	41.51k	42.43k	0.913k	0.934k
S ₃	B ₁	42.36fg	43.97e	23.33ef	22.67d	186.28g	188.46g	51.65g	52.84g	1.136g	1.162g
	B ₂	43.22ef	44.53e	23.67de	23.00d	192.93f	195.50f	54.55f	55.70f	1.200f	1.225f
	\mathbf{B}_0	38.92j	40.49i	21.00i	19.33gh	151.471	154.021	39.061	39.761	0.8591	0.8751
S 4	B 1	40.18i	41.61gh	22.00gh	21.00f	165.26j	168.77j	43.63j	44.42j	0.960j	0.977j
	\mathbf{B}_2	41.12h	42.37fg	22.33gh	21.67ef	172.33i	175.69i	46.34i	47.21i	1.019i	1.039i
	Bo	36.441	37.80k	16.001	18.00i	127.280	129.540	31.280	32.060	0.6880	0.7050
S_5	B ₁	37.22kl	38.67j	17.33k	18.67hi	136.34n	137.72n	33.86n	34.69n	0.745n	0.763n
	B ₂	37.98k	39.47j	19.00j	19.00gh	144.14m	146.16m	36.04m	36.90m	0.793m	0.812m
LSD at	5%	0.92	0.83	0.99	0.98	1.35	1.26	0.37	0.38	0.009	0.008

Table (6). Effect of irrigation water salinity and biochar rates on growth parameters of sage plant at
the second cut during two successive seasons (2019-2020)

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1= 450, S2= 1000, S3= 2000, S4= 3000, and S5= 4000 mgL^{-1} and B0= 0, B1= 2, B2= 4 ton fed⁻¹

1 st cut									
		Chloro	phyll a	Chloro	phyll b	Total chl	orophyll	Caro	tene
Treatr	nents				(mg g	⁻¹ F.W)			
		1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season
			Main fac	tor: Salinity	of irrigati	on water			
S1: 450 mg	L-1	1.050a	1.070a	0.604a	0.615a	1.654a	1.685a	0.482a	0.490a
S ₂ : 1000 m	$ m g L^{-1}$	1.019b	1.038b	0.591b	0.600b	1.610b	1.638b	0.470b	0.479b
S ₃ : 2000 m	$ m g L^{-1}$	0.978c	0.994c	0.573c	0.584c	1.551c	1.578c	0.456c	0.464c
S4: 3000 m	$ m g L^{-1}$	0.942d	0.959d	0.561d	0.571d	1.503d	1.530d	0.443d	0.453d
S5: 4000 m	$ m g L^{-1}$	0.893e	0.911e	0.549e	0.550e	1.442e	1.461e	0.424e	0.430e
LSD a	t 5%	0.002	0.009	0.008	0.005	0.007	0.008	0.002	0.004
			Sub	main factor: l	Biochar add	ition			
B ₀ : Without	biochar	0.947c	0.960c	0.561c	0.569c	1.508c	1.529c	0.444c	0.452c
B ₁ : Biochar	(2 ton fed ⁻	0.985b	1.005b	0.577b	0.589b	1.562b	1.594b	0.458b	0.466b
B ₂ : Biochar	(4 ton fed ⁻	0.998a	1.018a	0.589a	0.594a	1.587a	1.612a	0.463a	0.472a
) LSD a	t 5%	0.003	0.007	0.005	0.004	0.007	0.008	0.002	0.003
				Intera	ction				
	Bo	1.023e	1.041d	0.590cd	0.596c	1.614d	1.637d	0.472d	0.477de
S_1	\mathbf{B}_1	1.055b	1.077ab	0.609ab	0.621a	1.664b	1.698b	0.484b	0.493b
	\mathbf{B}_2	1.071a	1.091a	0.613a	0.627a	1.684a	1.719a	0.491a	0.500a
	Bo	0.978h	0.989f	0.573fg	0.584de	1.551g	1.573f	0.457f	0.465gh
S_2	B 1	1.035d	1.055cd	0.597bc	0.607b	1.632c	1.662c	0.475d	0.483cd
	B ₂	1.044c	1.069bc	0.603ab	0.609b	1.647c	1.678c	0.479c	0.489bc
	Bo	0.932k	0.952h	0.559hi	0.565fg	1.491j	1.517h	0.439i	0.448jk
S ₃	B 1	0.994g	1.013e	0.577ef	0.589cd	1.571f	1.602e	0.462e	0.468fg
	B ₂	1.008f	1.018e	0.585de	0.597c	1.593e	1.615	0.466e	0.475ef
	Bo	0.9201	0.929i	0.553i	0.559gh	1.473k	1.488ei	0.434j	0.444k
S 4	\mathbf{B}_1	0.946j	0.968gh	0.564ghi	0.574ef	1.510i	1.542g	0.445h	0.454ij
	\mathbf{B}_2	0.960i	0.980fg	0.568fgh	0.579e	1.528h	1.559f	0.449g	0.461hi
	Bo	0.8800	0.889k	0.531j	0.542i	1.411m	1.431k	0.4181	0.426m
S 5	B 1	0.895n	0.912j	0.540j	0.552h	1.4351	1.463j	0.425k	0.430lm
	B ₂	0.905m	0.932i	0.575efg	0.557gh	1.481jk	1.489i	0.430j	0.4351
LSD a	t 5%	0.007	0.016	0.012	0.010	0.016	0.018	0.004	0.007

Table (7). Effect of irrigation water salinity and biochar rates on photosynthetic pigments of sage plant at the first cut during two successive seasons (2019-2020)

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1= 450, S2= 1000, S3= 2000, S4= 3000, and S5= 4000 mgL⁻¹ and B0= 0, B1= 2, B2= 4 ton fed⁻¹

	2 nd cut									
		Chlore	ophyll a	Chloro	phyll b	Total chl	orophyll	Carotene		
Treat	nents				(mg g	g ⁻¹ F.W)				
		1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	
			Main fact	tor: Salinity	of irrigati	on water				
S1: 450 mg I	<i>2</i> -1	1.185a	1.200a	0.876a	0.885a	2.061a	2.084a	0.582a	0.589a	
S2: 1000 mg	з L ⁻¹	1.148b	1.175b	0.825b	0.832b	1.973b	2.007b	0.556b	0.563b	
S3: 2000 mg	5 L-1	1.098c	1.107c	0.755c	0.765c	1.853c	1.872c	0.519c	0.526c	
S4: 3000 mg	L^{-1}	1.062d	1.077d	0.703d	0.712d	1.765d	1.788d	0.487d	0.494d	
S5: 4000 mg	5 L-1	0.995e	1.007e	0.614e	0.622e	1.609e	1.630e	0.428e	0.434e	
LSD a	t 5%	0.008	0.019	0.004	0.003	0.012	0.020	0.005	0.005	
Sub main factor: Biochar addition										
B ₀ : Without	biochar	1.061c	1.084b	0.704c	0.711c	1.765c	1.795c	0.485c	0.491c	
B1: Biochar (2 ton fed-1)		1.107b	1.119a	0.768b	0.778b	1.876b	1.897b	0.522b	0.528b	
B ₂ : Biochar	(4 ton fed ⁻¹)	1.125a	1.137a	0.792a	0.800a	1.916a	1.937a	0.536a	0.544a	
LSD a	t 5%	0.011	0.021	0.007	0.006	0.013	0.021	0.003	0.002	
				Interac	ction					
	Bo	1.149de	1.163cd	0.825e	0.833e	1.974e	1.996cd	0.555e	0.560e	
S_1	\mathbf{B}_1	1.196ab	1.214ab	0.891b	0.902b	2.087b	2.115a	0.590b	0.596b	
	\mathbf{B}_2	1.210a	1.223a	0.913a	0.919a	2.123a	2.142a	0.601a	0.612a	
	B ₀	1.101gh	1.164cd	0.758h	0.764h	1.859h	1.928e	0.521h	0.527h	
S_2	\mathbf{B}_1	1.164cd	1.172bc	0.846d	0.853d	2.010d	2.025bc	0.567d	0.574d	
	B ₂	1.177bc	1.189abc	0.871c	0.878c	2.049c	2.067b	0.580c	0.588c	
	B ₀	1.049jk	1.056gh	0.683k	0.692k	1.733k	1.748g	0.477k	0.483k	
S ₃	\mathbf{B}_1	1.112fg	1.122def	0.780g	0.792g	1.892g	1.913e	0.534g	0.540g	
	B ₂	1.132ef	1.143cde	0.802f	0.812f	1.934f	1.955de	0.546f	0.554f	
	Bo	1.035kl	1.052ghi	0.6661	0.6741	1.7001	1.726g	0.4631	0.4711	
S ₄	\mathbf{B}_1	1.067ij	1.079fg	0.710j	0.719j	1.777j	1.798f	0.493j	0.499j	
	B ₂	1.085hi	1.099efg	0.733i	0.742i	1.818i	1.841f	0.506i	0.512i	
	Bo	0.972n	0.985j	0.5880	0.5940	1.560o	1.579i	0.4110	0.4160	
S 5	\mathbf{B}_1	0.996mn	1.008ij	0.615n	0.625n	1.611n	1.633h	0.428n	0.433n	
	B ₂	1.018lm	1.029hij	0.639m	0.649m	1.657m	1.678h	0.447m	0.454m	
LSD a	t 5%	0.025	0.047	0.016	0.001	0.029	0.047	0.008	0.005	

Table (8). Effect of irrigation water salinity and biochar rates on photosynthetic pigments of sage plant at the second cut time during two successive seasons (2019-2020)

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1= 450, S2= 1000, S3= 2000, S4= 3000, and S5= 4000 mgL⁻¹ and B0= 0, B1= 2, B2= 4 ton fed⁻¹

2. Indicators of oxidative stress

Indicators of oxidative stress *i.e.*, proline (μ mol.g⁻¹) and malondialdehyde (MDA, biomarker of lipid peroxidation, μ mol.g⁻¹) of plants as affected by the salinity of irrigation water treatments and biochar soil addition are presented in Table 9 for 1st cut and Table 10 for 2nd cut during both studied seasons. The results indicate that the values of proline and MDA exhibited an upward trend as the salinity of irrigation water rate. Consistent patterns were observed for both cuts and across both study seasons. These findings suggest that salinity stress contributes to heightened oxidative stress indicators in plants, while biochar application demonstrates a potential mitigating effect, underscoring its role in ameliorating oxidative stress in sage plants subjected to varying salinity conditions. The results obtained align with those of **Abd–Elhady (2023)**.

3. Chemical and biochemical constituents

Table 11 details the influence of irrigation water salinity treatments and biochar soil addition on leaf chemical and biochemical constituents, encompassing N, P, K, and carbohydrate (%) for the first cut during both study seasons. Correspondingly, Table 12 provides the relevant data for the second cut. The results indicate that the values of chemical and biochemical constituents decreased as the salinity level of irrigation water, increased Notably, the highest values for all the specified traits were observed in plants irrigated with fresh water (EC value=450mgL⁻¹). Aldo, plants grown in soil treated with 4 tons of biochar per fed exhibited the highest values, followed by those treated with 2 tons of biochar per fed, while the control group without biochar treatment displayed the lowest values. Overall, the incorporation of biochar demonstrated benefits in enhancing the overall performance of sage under varying salinity levels in irrigation water, spanning from 1000 to 4000 mgL⁻¹. This consistent trend was observed for both cuts and across both study seasons.

The observed decline in chemical and biochemical constituents, with increasing salinity levels in irrigation water from 450 to 4000 mgL⁻¹ can be attributed to the detrimental effects of salinity stress on sage plants. Elevated salinity induces osmotic stress, disrupting water uptake and nutrient absorption. This, in turn, negatively impacts essential metabolic functions and biochemical processes, leading to a decrease in nutrient content. Additionally, the presence of high concentrations of specific ions, such as sodium, can contribute to ionic toxicity, interfering with enzymatic activities and cellular functions (Mehdizadeh et al. (2019). On the other hand, the positive impact of biochar on these traits can be attributed to its ability to enhance soil structure, water retention, and nutrient availability. Biochar, acting as a soil amendment, mitigates the adverse effects of salinity by improving the overall soil environment, thereby promoting better nutrient uptake and plant performance. These findings are in agreement with those of Anwari et al. (2020). In this regard, Akhtar et al., 2015, worked on potato and clearly demonstrated that, the addition of biochar can significantly mitigate salinity stress due to its high salt sorption capacity and by increasing K+ availability. They also concluded that, increasing salinity levels resulted in significant reductions of photosynthetic rate and midday leaf water potential. At each salinity level, the incorporation of biochar increased photosynthetic rate and midday leaf water potential, decreased Na+, Na+/K+ ratio and increased K+ content in xylem with biochar amendment which also indicated its ameliorative effects on potato plants in response to salinity stress.

Table (9). Effect of irrigation	water salinity	and biochar	rates on 1	Indicators of	of oxidative	e stress
(proline and MDA) of sage plant	at the first	cut time d	uring two s	successive s	seasons
(2019-2020)						

			1 st cut							
Proline, μmol g ⁻¹ MDA, μmol g ⁻¹										
1 reati	nents	1 st season	2 nd season	1 st season	2 nd season					
		Main factor: Sal	inity of irrigation v	vater						
S1: 450 n	ng L ⁻¹	4.16e	4.25e	4.62e	4.73e					
S ₂ : 1000	mg L ⁻¹	4.57d	4.69d	4.90d	5.01d					
S ₃ : 2000	mg L ⁻¹	5.54c	5.66c	5.83c	5.94c					
S4: 3000	mg L ⁻¹	5.87b	5.97b	6.18b	6.32b					
S5: 4000	mg L ⁻¹	6.67a	6.82a	6.94a	7.08a					
LSD at 5%		0.06	0.05	0.09	0.10					
		Sub main fact	or: Biochar additio	n						
Bo: Without bi	ochar	5.76a	5.89a	6.06a	6.19a					
B1: Biochar (2 ton fed-1)		5.27b	5.39b	5.62b	5.74b					
B ₂ : Biochar (4 ton fed ⁻¹)		5.04c	5.15c	5.41c	5.52c					
LSD at 5%		0.06	0.06 0.07 0.06							
		In	teraction							
	Bo	4.71k	4.81k	5.05k	5.16k					
S_1	\mathbf{B}_1	4.03n	4.10n	4.47n	4.59n					
	\mathbf{B}_2	3.750	3.830	4.320	4.430					
	\mathbf{B}_0	4.95j	5.10j	5.26j	5.38j					
S_2	\mathbf{B}_1	4.511	4.621	4.831	4.931					
	B ₂	4.24m	4.34m	4.63m	4.72m					
	\mathbf{B}_{0}	6.03e	6.16e	6.31e	6.44e					
S_3	\mathbf{B}_1	5.38h	5.51h	5.70h	5.81h					
	B ₂	5.21i	5.32i	5.49i	5.58i					
	Bo	6.26d	6.37d	6.52d	6.65d					
S_4	B ₁	5.77f	5.87f	6.13f	6.27f					
	B ₂	5.57g	5.68g	5.89g	6.04g					
	Bo	6.86a	7.02a	7.14a	7.31a					
S 5	B 1	6.68b	6.85b	6.95b	7.10b					
	B ₂	6.46c	6.60c	6.71c	6.85c					
LSD a	t 5%	0.12	0.16	0.13	0.11					

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1=450, S2=1000, S3=2000, S4=3000, and S5=4000 mgL⁻¹ and B0=0, B1=2, B2=4 ton fed⁻¹

		2 nd	cut		
		Proline,	µmol g ⁻¹	MDA, J	umol g ⁻¹
Treat	ments	1 st	2 nd	1 st	2 nd
		season	season	season	season
	ľ	Main factor: Salinit	y of irrigation wat	ter	
S1: 450 1	mg L ⁻¹	2.61e	4.25e	3.35e	4.73e
S ₂ : 1000) mg L ⁻¹	2.91d	4.69d	3.59d	5.01d
S ₃ : 2000) mg L ⁻¹	3.67c	5.66c	4.19c	5.94c
S4: 3000) mg L ⁻¹	3.97b	5.97b	4.44b	6.32b
S5: 4000) mg L ⁻¹	4.70a	6.82a	4.97a	7.08a
LSD a	at 5%	0.03	0.05	0.03	0.10
		Sub main factor:	Biochar addition		
B ₀ : Without biochar		3.90a	5.89a	4.37a	6.19a
B1: Biochar (2 ton fed ⁻¹)		3.50b	5.39b	4.05b	5.74b
B2: Biochar (4 to	on fed ⁻¹)	3.31c	5.15c 3.910		5.52c
LSD a	at 5%	0.04	0.07	0.03	0.05
		Intera	action		
	Bo	3.02k	4.81k	3.68k	5.16k
S_1	B ₁	2.50n	4.10n	3.26n	4.59n
	B ₂ 2.30	2.300	3.830 3.120	3.120	4.430
	Bo	3.23j	5.10j	3.83j	5.38j
S_2	B 1	2.851	4.621	3.531	4.931
	B ₂	2.66m	4.34m	3.42m	4.71m
	Bo	4.06e	6.16e	4.52e	6.44e
S ₃	B ₁	3.55h	5.51h	4.11h	5.81h
	B ₂	3.40i	5.32i	3.95i	5.58i
	Bo	4.29d	6.37d	4.69d	6.65d
S 4	B ₁	3.89f	5.87f	4.39f	6.27f
	\mathbf{B}_2	3.73g	5.68n	4.24n	6.04n
	Bo	4.90a	7.02a	5.12a	7.31a
S 5	B1	4.70b	6.85b	4.96b	7.10b
	 B2	4.49c	6.60c	4.84c	6.85c
		0.00	0.16	0.00	0.11

Table (10). Effect of irrigation water salinity and biochar rates on Indicators of oxidative stress
(proline and MDA) of sage plant at the second cut time during two successive seasons
(2019-2020)

Means within a column followed by a different letter (s) are statistically different at a 0.05 level, where S1= 450, S2= 1000, S3= 2000, S4=

3000, and S5= 4000 mgL⁻¹ and B0= 0, B1= 2, B2= 4 ton fed⁻¹

				1 st	cut				
		I	N P			I	X	Carboh	ydrates
Treatm	ents				(%	(0)			
		1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
		season	Main fac	tor: Salinit	y of irrigat	ion water	season	season	season
S ₁ : 450 m	g L ⁻¹	2.08a	2.12a	0.253a	0.256a	2.02a	2.05a	41.90a	42.88a
S ₂ : 1000	mg L ⁻¹	1.96b	2.01b	0.242b	0.246b	1.90b	1.94b	39.89b	40.54b
S ₃ : 2000	mg L ⁻¹	1.83c	1.87c	0.230c	0.233c	1.72c	1.75c	37.33c	37.81c
S4: 3000	mg L ⁻¹	1.72d	1.75d	0.218d	0.221d	1.60d	1.63d	35.34d	36.08d
S5: 4000	mg L ⁻¹	1.55e	1.59e	0.201e	0.204e	1.43e	1.45e	32.26e	32.78e
LSD at	5%	0.06	0.06	0.002	0.002	0.05	0.02	0.10	0.17
			Sub	main factor:	Biochar ad	dition			
B ₀ : Without	biochar	1.73c	1.77c	0.219c	0.221c	1.61c	1.64c	35.45c	36.24c
B ₁ : Biochar	(2 ton	1.85b	1.89b	0.232b	0.234b	1.77b	1.80b	37.88b	38.52b
B ₂ : Biochai	: (4 ton	1 91a	1 95a	0.236a	0 240a	1.82a	1 85a	38 70a	39 31a
fed ⁻¹)	50/	0.02	0.03	0.003	0.001	0.03	0.04	0.13	0.12
	570	0.03	0.03	Inton	ontion	0.03	0.04	0.13	0.12
	D.	1.06da	2.00da	0.242ad	0.2454	1.00da	1.02ad	20.850	40.862
S.	D() D.	2.11ab	2.00de	0.245cu	0.243u	2.05ab	2.07	12 48b	40.80e
51	DI B.	2.11a0	2.15a0	0.250a0	0.2590	2.05a0	2.07a	42.460	43.400
	D2 D.	2.10a	2.20a	0.201a	0.203a	2.11a	2.14a	45.50a	44.32a
S.	D() D.	1.62gli	1.0/1g	0.2201	0.251g	1.74gii	1.771g	40 78d	30.1911 41.27d
52	D1 D.	2.01cu	2.00cu	0.2470	0.2576	2.01ha	1.900c	40.780	41.370
	D2 D.	2.0700	2.120C	0.2350	0.2370	2.0100	1.59::	41.360	42.07C
S.	D() D.	1.70j	1.74J	0.21011	0.219J	1.34J	1.38IJ	34.0/K	29.69g
53	D1 D.	1.001g	1.921g	0.2356	0.2381	1.001g	1.02ei	30.29g	30.00g
	D2 D.	1.9501	1.60:1	0.2580	0.2426	1.0401	1.55:1	22.041	24 941
S.	D() D.	1.00JK	1.09JK	0.2111j	0.214K	1.55]	1.55JK	25 64:	26.29;
54	D1 D.	1./31J 1.706:	1./01J	0.219gn	0.2221	1.021	1.00ml	35.04J	20.28J
	D2 D	1.70III 1.51m	1.02111	0.2231g	0.22011	1.0711	1.70gli	31.45	32.110
S	D0 D	1.31m	1.50Im	0.1901	0.1980	1.3/1	1.391	31.430 22.21m	32.110
35	D1 D.	1.50111	1.371111	0.202K	0.204111	1.4JK	1.4/KI	32.2111	32.0011
I CD -	D2	1.00KI	1.04KI	0.200jk	0.2091	1.4/JK	1.49K	55.15m	55.55m
LSD at	3%0	0.07	0.07	0.006	0.003	0.07	0.08	0.28	0.27

Table (11).	. Effect o	f irrigation	water sa	alinity and	l biochar	rates o	on leaf	chemical	constituents	of
	sage pla	nt at the fi	st cut tir	ne during	two succ	essive s	seasons	(2019-202	20)	

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1= 450, S2= 1000, S3= 2000, S4=

3000, and S5= 4000 mgL $^{\text{-1}}$ and B0= 0, B1= 2, B2= 4 ton fed $^{\text{-1}}$

				2 nd	cut				
		N	N	I		k	C C	Carboh	ydrates
Treatr	nents				(%	6)			
		1 st	2 nd	1 st	2 nd	1 st	2 nd	1 st	2 nd
		season	Main fac	tor: Salinit	y of irrigat	ion water	season	season	season
S1: 450 n	ng L ⁻¹	2.20a	2.29a	0.279a	0.282a	2.09a	2.14a	44.78a	45.49a
S ₂ : 1000	mg L ⁻¹	2.12b	2.20b	0.267b	0.270b	2.00b	2.04b	42.81b	43.47b
S ₃ : 2000	mg L ⁻¹	2.00c	2.07c	0.252c	0.256c	1.86c	1.90c	40.31c	40.96c
S4: 3000	mg L ⁻¹	1.90d	1.96d	0.242d	0.246d	1.76d	1.80d	38.32d	39.15d
S5: 4000	mg L ⁻¹	1.76e	1.83e	0.225e	0.228e	1.63e	1.66e	35.42e	35.92e
LSD a	ıt 5%	0.006	0.04	0.003	0.004	0.03	0.03	0.23	0.12
			Sub	main factor:	Biochar add	dition			
B ₀ : Withou	ıt	1.91b	1.98b	0.243c	0.246c	1.78c	1.81c	38.49c	39.04c
B1: Biocha	r (2 ton	2.02a	2.10a	0.256b	0.259b	1.90b	1.94b	40.81b	41.55b
fed ⁻¹) B ₂ : Biochar (4 ton fed ⁻¹)		2.06a	2 13a	0 261a	0 265a	1 94a	1 98a	41 69a	42 41a
		0.04	0.04	0.003	0.002	0.04	0.02	0.16	0.14
	it 5 /0	0.04	0.04	Intor	oction	0.04	0.02	0.10	0.14
	Ba	2 10cd	2 19cd	0.267de	0.269e	2 00cde	2.04cd	42 78e	43 36e
S.	Du Bi	2.10eu 2.24ab	2.19eu 2.32ah	0.207de	0.2050	2.00ede	2.0400	45.38h	46.09b
51	B ₁	2.240	2.3240	0.287a	0.2030 0.292a	2.1240	2.10u 2.21a	46 17a	47.02a
	B ₂	2.20a	2.50a 2.07ef	0.253gh	0.252d	2.10a	1.92e	40.17a	40.96h
S.	B ₁	2.01de	2.07er	0.255gn	0.2361	2.05bcd	2.07c	43.65d	44 37d
52	B ₂	2.1000 2.21ab	2.2.100 2.29ab	0.276bc	0.275d	2.099bc	2.13h	44 39c	45.07c
	B	1.88føh	1.95øhi	0.238ik	0.241i	1.73hii	1.77gh	37.74k	38.33k
S 3	B1	2.05d	2.13de	0.257fg	0.260f	1.91ef	1.94e	41.17g	41.87g
	B ₂	2.08cd	2.14de	0.263ef	0.267e	1.96def	2.00d	42.03f	42.70f
	Bo	1.84ghi	1.91hij	0.235kl	0.244hi	1.70ijk	1.74hi	37.021	37.621
S 4	B 1	1.91fg	1.98gh	0.242ij	0.245h	1.77hi	1.82fg	38.38j	39.46j
	\mathbf{B}_2	1.95ef	2.00fg	0.248hi	0.251g	1.81gh	1.85f	39.55i	40.37i
	Bo	1.72j	1.79k	0.220n	0.2231	1.591	1.61k	34.500	34.950
S 5	B1	1.77ij	1.84jk	0.226mn	0.229k	1.63kl	1.67j	35.45n	35.94n
	B ₂	1.80hij	1.87ijk	0.230lm	0.233j	1.67jkl	1.71ij	36.31m	36.87m
LSD a	ıt 5%	0.10	0.09	0.006	0.004	0.10	0.05	0.36	0.31

Table (12).	Effect	of irrigation	water sal	linity and	biochar	rates on	leaf o	chemical	constituents	of
	sage p	lant at the se	cond cut	time duriı	ng two si	iccessive	seaso	ns (2019-	2020)	

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1=450, S2=1000, S3=2000, S4=3000, and S5=4000 mgL⁻¹ and B0=0, B1=2, B2=4 ton fed⁻¹

4. Oil yield Characters

Tables 13 and 14 delineate the impact of the studied treatments on oil yield (% & ml plant⁻¹ & Kg fed⁻¹ for each cut) for the first and second cuts, respectively. Oil yield characters in terms of, oil percentage, oil yield ml plant-1 and oil yield kg fed⁻¹ each cut were decreased as the salinity level of irrigation water, increased Notably, the highest values for all the specified traits were observed in plants irrigated with fresh water (EC value=450mgL⁻¹). Plants grown in soil treated with 4 tons of biochar per fed recorded the highest values, followed by those treated with 2 tons of biochar per fed, while the control treatment plants without biochar displayed the lowest values. Overall, the incorporation of biochar demonstrated benefits in enhancing the overall performance of sage under varying salinity levels in irrigation water, ranging from 1000 to 4000 mgL⁻¹. This trend was observed for the first and second cuts and during the two growing seasons for the potential role of biochar in ameliorating the impact of salinity stress on sage plants oil yield parameters. Our results were in the same line with **Mehdizadeh** *et al.* (2019) results. The results **Akhtar** *et al.*, 2015, also suggested that the incorporation of biochar might be a promising approach for enhancing crop productivity in salt-affected soils.

5. Essential oil constituents

Data in Table 15 illustrate the effect of irrigation water salinity and biochar in most active treatments on sage volatile oil components percentages of the 2020 season (second cut samples), compared to untreated plants. Twenty components were determined, seventeen were distinct compounds were identified and three were not identified. From the identified constituents, α -Thujone (ranging from 25.76 to 30.52%) was the dominant component fraction in the sage oil, followed by Camphor (ranging from 19.09 to 27.21%) as a predominant component. The β -Thujone component (ranging from 10.64 to 17.96%) ranked third after α -Thujone and β -Thujone while 1,8-Cineole (ranging from 5.90 to 7.35%) ranked fourth. The other main components were β -Pinene (ranging from3.19 to6.33%), Camphene (ranging from 1.27 to 4.76%), Humulene (ranging from 2.40 to 4.10%) and Caryophyllene oxide (ranging from 1.20 to 3.51%). The interaction treatments of S2 (1000 mgL⁻¹) B2 (4 ton fed⁻¹) and S3 (2000 mgL⁻¹) B2 (4 ton fed⁻¹) gave the highest values of α -Thujone to record 30.01 and 30.52%, respectively. Such a profile is similar to the reports of other authors on sage under salinity stress with α -Thujone as the dominant component of sage herb essential oil, like Es-**sbihi** *et al.* (2021) and Noémi *et al.* (2023).

6. Post-harvest soil properties

Data presented in Table 16 elucidates the influence of irrigation water salinity treatments and the addition of biochar to soil on key soil parameters, namely nitrogen (N), phosphorus (P), potassium (K) concentrations (mg kg⁻¹), soil electrical conductivity (EC) in (dSm-1), and soil water holding capacity (WHC, %) (Combined data over both seasons). The impact of irrigation water salinity treatments on the studied soil parameters was generally inconclusive, with the exception of soil EC, which exhibited a discernible correlation with the salinity level in the irrigation water. Specifically, the soil EC value demonstrated an upward trend in tandem with the increasing salinity level in the irrigation water.

Conversely, the biochar treatments exhibited a clear and comprehensive effect on all the examined soil parameters. As the biochar application rate increased, there was a notable elevation in the concentrations of nitrogen (N), phosphorus (P), and potassium (K) in the soil (mg kg⁻¹). Furthermore, the soil water holding capacity (WHC), expressed as a percentage, demonstrated an increase with escalating biochar rates. Intriguingly, in direct contrast to the trend observed with salinity, the soil EC value exhibited a marked decrease as the biochar application rate increased.

			1 ^s	^t cut				
_	Oil, % Oil yield, g plant ⁻¹ Oil yield, Kg I							
Treatme	ents	1 st season	2 nd season	1 st season	2 nd season	1 st season	2 nd season	
		Main f	factor: Salini	ty of irrigatio	n water	stason	scason	
S1: 450 mg	g L-1	0.60a	0.63a	0.294a	0.312a	6.46a	6.87a	
S ₂ : 1000 n	ng L ⁻¹	0.54b	0.55b	0.238b	0.249b	5.24b	5.47b	
S3: 2000 n	ng L ⁻¹	0.47c	0.49c	0.178c	0.189c	3.92c	4.15c	
S4: 3000 n	ng L ⁻¹	0.40d	0.42d	0.132d	0.139d	2.90d	3.07d	
S5: 4000 n	ng L ⁻¹	0.33e	0.33e	0.084e	0.087e	1.85e	1.92e	
LSD at	5%	0.03	0.04	0.011	0.017	0.25	0.37	
		Sı	ıb main factor	: Biochar addi	tion			
B ₀ : Without bio	char	0.42b	0.43c	0.142c	0.150c	3.12c	3.31c	
B1: Biochar (2 t	on fed ⁻¹)	0.48a	0.50b	0.198b	0.208b	4.36b	4.57b	
B ₂ : Biochar (4 ton fed ⁻¹)		0.51a	0.52a	0.215a	0.228a	4.73a	5.01a	
LSD at 5%		0.03	0.02	0.010	0.007	0.23	0.15	
			Inter	raction				
	Bo	0.55cde	0.57cd	0.239cd	0.257d	5.27cd	5.65d	
\mathbf{S}_1	B ₁	0.62ab	0.64ab	0.310a	0.328b	6.82a	7.21b	
	B ₂	0.64a	0.66a	0.332a	0.353a	7.30a	7.77a	
	Bo	0.46fg	0.48fg	0.170ef	0.181g	3.73ef	3.97g	
S_2	\mathbf{B}_1	0.57bcd	0.58cd	0.262bc	0.269d	5.77bc	5.93d	
	B ₂	0.59abc	0.61bc	0.282b	0.296c	6.20b	6.51c	
	Bo	0.40ghi	0.41hi	0.126hi	0.132i	2.77hi	2.90i	
S ₃	\mathbf{B}_1	0.49ef	0.51ef	0.192e	0.206f	4.22e	4.54f	
	B ₂	0.52de	0.54de	0.217d	0.228e	4.78d	5.01e	
	Bo	0.37hij	0.39ij	0.108ij	0.114j	2.38ij	2.50j	
S 4	B 1	0.41ghi	0.43hi	0.137gh	0.144i	3.01gh	3.18i	
	B ₂	0.43fgh	0.44gh	0.150fg	0.160h	3.30fg	3.52h	
	Bo	0.30k	0.311	0.066k	0.0701	1.45k	1.531	
S 5	B 1	0.33jk	0.33kl	0.091j	0.090k	2.00j	1.99k	
	B ₂	0.35ijk	0.36jk	0.095j	0.102jk	2.09j	2.24jk	
LSD at :	5%	0.06	0.04	0.023	0.016	0.51	0.34	

Table (13). Effect of irrigation water salinity and biochar rates on oil yield of sage plant at the first cut time during two successive seasons (2019-2020)

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1=450, S2=1000, S3=2000, S4=3000, and S5=4000 mgL⁻¹ and B0=0, B1=2, B2=4 ton fed⁻¹

			2	2 nd cut			
		Oil	, %	Oil yield	, g plant ⁻¹	Oil yield, Kg	1 st cut ⁻¹ fed ⁻¹
Treat	ments	1 st	2 nd	1 st	2 nd	1 st	2 nd
		Main	factor: Sali	nity of irrigat	tion water	scason	scason
S1: 450	mg L ⁻¹	0.63a	0.66a	0.397a	0.421a	8.73a	9.27a
S ₂ : 100	0 mg L ⁻¹	0.58b	0.60b	0.333b	0.355b	7.33b	7.81b
S3: 200	0 mg L ⁻¹	0.52c	0.54c	0.261c	0.275c	5.74c	6.04c
S4: 300	0 mg L ⁻¹	0.47d	0.49d	0.203d	0.217d	4.47d	4.78d
S5: 400	0 mg L ⁻¹	0.39e	0.40e	0.131e	0.140e	2.88e	3.08e
LSD	at 5%	0.03	0.01	0.018	0.005	0.40	0.12
		5	Sub main facto	or: Biochar ad	dition		
B ₀ : Without	biochar	0.47c	0.49c	0.211c	0.223c	4.65c	4.91c
B1: Biochar	(2 ton fed ⁻¹)	0.53b	0.56b	0.279b	0.298b	6.14b	6.56b
B₂: Biochar (4 ton fed ⁻¹)		0.56a	0.58a	0.305a	0.323a	6.70a	7.11a
LSD at 5%		0.02	0.01	0.007	0.003	0.16	0.07
			Int	eraction			
	Bo	0.59c	0.60e	0.334e	0.349e	7.35e	7.68e
S_1	\mathbf{B}_1	0.65a	0.68b	0.419b	0.444b	9.21b	9.78b
	B ₂	0.66a	0.69a	0.438a	0.471a	9.63a	10.35a
	\mathbf{B}_{0}	0.52ef	0.54h	0.254h	0.272h	5.60h	5.98h
S_2	\mathbf{B}_1	0.60bc	0.62d	0.356d	0.381d	7.82d	8.38d
	\mathbf{B}_2	0.63ab	0.65c	0.389c	0.412c	8.57c	9.06c
	Bo	0.45hi	0.46k	0.188k	0.194k	4.14k	4.27k
S ₃	B ₁	0.55de	0.57g	0.282g	0.303g	6.21g	6.67g
	B ₂	0.57cd	0.59f	0.313f	0.327f	6.88f	7.19f
	B ₀	0.44i	0.46k	0.1711	0.1821	3.751	4.001
S 4	B 1	0.48gh	0.50j	0.208j	0.224j	4.58j	4.92j
	B ₂	0.50fg	0.52i	0.230i	0.247i	5.07i	5.43i
	Bo	0.35k	0.37n	0.110o	0.1200	2.410	2.630
S 5	B 1	0.39j	0.40m	0.131n	0.140n	2.88n	3.08n
	B ₂	0.42i	0.441	0.153m	0.161m	3.36m	3.54m
LSD	at 5%	0.03	0.01	0.016	0.006	0.35	0.15

Table (14).	Effect	of irrigation	water	salinity	and	biochar	rates	on oil	yield	of sage	plant	at th	e
	second	cut time du	ring tw	o succes	ssive	seasons	(2019-	2020)					

Means within a column followed by a different letter (s) are statistically different at 0.05 level, where S1=450, S2=1000, S3=2000, S4=3000, and S5=4000 mgL⁻¹ and B0=0, B1=2, B2=4 ton fed⁻¹

ID	treatments	S1 B0 (control)	S1 B2	S2 B2	S3 B2	S4 B2	S5 B2
	components	Area%	Area%	Area%	Area%	Area%	Area%
1	α-Pinene	0.46	1.96	2.15	0.36	1.38	1.51
2	Camphene	4.76	3.15	1.27	3.56	2.20	4.55
3	β-Pinene	6.33	3.71	5.85	4.59	3.19	4.59
4	Myrcene	1.89	1.16	0.82	1.10	5.59	1.39
5	p-Cymene	0.84	0.64	0.43	0.73	1.24	0.77
6	Limonene	1.89	1.28	1.66	1.45	1.51	1.51
7	1,8-Cineole	6.84	6.29	7.10	6.31	5.90	7.35
8	γ-Terpinene	1.04	0.83	0.70	0.87	0.99	0.87
9	α-Thujone	27.75	29.98	30.01	30.52	27.08	25.76
10	β-Thujone	14.90	16.94	10.87	16.73	10.64	17.96
11	Camphor	19.09	21.34	23.28	21.67	27.21	19.71
12	unkown	0.46	0.30	0.47	0.38	0.59	0.40
13	Borneol	0.59	0.58	1.44	0.51	1.34	0.45
14	α-Terpineol	3.82	1.21	0.71	0.43	0.47	0.48
15	Bornyl acetate	2.55	3.03	2.34	0.89	3.00	1.32
16	unkown	0.27	1.28	0.36	2.50	0.38	3.25
17	β-caryophyllene	1.22	1.37	1.76	1.30	1.80	1.41
18	Humulene	2.42	2.40	4.10	2.70	2.48	2.83
19	unkown	0.71	0.79	1.18	1.03	1.83	1.21
20	Caryophyllene oxide	2.15	1.75	3.51	2.38	1.20	2.73
Tot	al identified components	98.56	97.63	97.99	96.09	97.2	95.14

 Table (15). Effect of irrigation water salinity and biochar most active treatments and control onsage volatile oil components percentages of 2020 season (second cut samples)

Where S1=450, S2=1000, S3=2000, S4=3000, and S5=4000 mgL⁻¹ and B0=0, B1=2, B2=4 ton fed⁻¹

Table (16).	Properties of the experimental soil samples after harvest (combined data over both
	seasons)

Soil afte	r harvest	N mg.kg ⁻¹	P mg.kg ⁻¹	K mg.kg ⁻¹	EC dSm ⁻¹	WHC %
	Bo	41.74	8.08	207.9	1.93	23.03
S_1	B 1	43.02	8.62	218.7	1.87	25.93
	B ₂	43.20	8.68	220.1	1.90	26.31
	B ₀	41.84	8.15	209.2	2.06	24.07
S_2	B ₁	43.38	8.78	222.0	1.98	25.74
	B ₂	43.58	8.86	223.2	2.02	26.21
	B ₀	41.93	8.21	211.4	2.17	23.58
S 3	B ₁	43.77	8.94	225.3	2.14	24.99
	B ₂	43.93	9.03	227.0	2.15	26.15
	Bo	41.44	8.33	213.3	2.24	23.50
S 4	B 1	44.13	9.09	228.4	2.22	25.85
	B ₂	44.26	9.19	230.3	2.19	26.07
	Bo	42.16	8.49	215.4	2.35	23.62
S 5	B 1	44.41	9.26	231.6	2.30	26.03
	B ₂	44.59	9.35	233.4	2.32	26.24

Where S1= 450, S2= 1000, S3= 2000, S4= 3000, and S5= 4000 mgL⁻¹ and B0= 0, B1= 2, B2= 4 ton fed⁻

The unclear impact of irrigation water salinity on most soil parameters may be attributed to complex interactions and dependencies within the soil-plant-water system. Salinity levels might not have a direct and consistent effect on soil nutrient concentrations and water-holding capacity. The increase in soil electrical conductivity (EC) with rising salinity levels in irrigation water is consistent with the well-known principle that salinity increases the ability of water to conduct electricity. This can be attributed to the accumulation of soluble salts in the soil, affecting its electrical properties (**Akhtar** *et al.*, **2015**). The positive impact of biochar on soil nutrient concentrations (N, P, K) could be attributed to the inherent nutrient content of biochar itself and its ability to improve nutrient retention and availability in the soil. Biochar acts as a nutrient reservoir, promoting nutrient exchange between the soil and plant roots. The increase in soil water-holding capacity (WHC) with higher biochar rates is likely due to the porous structure of biochar, enhancing soil structure and water retention. Biochar's porous nature can create a more favorable environment for water storage and availability to plants. The decrease in soil electrical conductivity (EC) with increasing biochar rates suggests a potential ameliorative effect of biochar on soil salinity. Biochar may assist in mitigating the adverse impacts of salinity by altering the ion exchange capacity and promoting better water retention in the soil (**Mehdizadeh** *et al.* (**2019**).

In summary, while irrigation water salinity showed a clearer influence on soil electrical conductivity, biochar additions demonstrated a positive impact on soil nutrient concentrations and water-holding capacity while mitigating the adverse effects of salinity on the soil.

Conclusion

It can be concluded that increasing salinity levels in irrigation water adversely impacted growth traits, photosynthetic pigments, and chemical constituents of sage plants. On the other hand, the incorporation of biochar emerged as a noteworthy strategy to mitigate the adverse effects of salinity on sage plants. The highest values for most measured traits were observed with the highest biochar rate (4 ton fed⁻¹), followed by the 2 ton fed⁻¹ treatment, outperforming the control treatment. These findings not only contribute to our understanding of sage plant adaptation to saline conditions but also highlight the potential of biochar as a beneficial amendment in enhancing plant performance under salinity stress. Therefore, the study provides insights into agricultural practices in regions facing water scarcity and salinity challenges in salt-affected croplands. Thus results recommendation is to assess the biochar rate of 4 ton fed⁻¹ to sage cultivation under salinity stress condition for improving growth and productivity as well as salinity stress mitigation

Conflicts of interest

Authors have declared that no competing interests exist. **Formatting of funding sources:** The research was funded by the personal efforts of the authors.

REFERENCES

Abd–Elhady, W. M. F., Elsherpiny, M.A. and Badour, A. G. (2023). Potential effect of cobalt and selenium on croton plants grown under saline conditions. Journal of Plant Production, 14(11): 351-358.

Akhondzadeh, S.; Noroozian, M.; Mohammadi, M.; Ohadinia, S.; Jamshidi, A. and Khani, M. (2003). Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: A double blind, randomized and placebo-controlled trial. J. Clin. Pharm. Ther., 28, 53–59.

Akhtar S. S., Andersen M. N. and Liu F. (2015). SALINITY STRESS: Biochar Mitigates Salinity Stress in Potato. J Agro Crop Sci., ISSN 0931-2250, doi:10.1111/jac.12132.

Anwari, G., Mandozai, A. and Feng, J. (2020). Effects of biochar amendment on soil problems and improving rice production under salinity conditions. Advanced journal of graduate research, 7(1), 45-63.

A.O.A.C. (2000). "Official Methods of Analysis". 18th Ed. Association of Official Analytical Chemists, Inc., Gaithersburg, MD, Method 04.

Arikat, N.A.; Jawad, F.M.; Karam, N.S.; Shibli, R.A. (2004). Micropropagation and accumulation of essential oils in wild sage (*Salvia fruticosa* Mill.). Sci. Hort., 100: 193–202.

CoStat version 6.303 copyright (1998-2004). CoHort Software 798 Lighthouse Ave. PMB 320, Monterey, CA, 93940, USA.

Davey, M. W., Stals, E., Panis, B., Keulemans, J. and Swennen, R. L. (2005). High-throughput determination of malondialdehyde in plant tissues. Analytical biochemistry, 347(2): 201-207.

El-Feky, A. M. and Aboulthana, W. M. (2016). Phytochemical and biochemical studies of sage (*Salvia officinalis* L.). Pharmaceutical and Biosciences Journal, 56-62.

Elsherpiny, M. A. (2023). Maximizing faba bean tolerance to soil salinity stress using gypsum, compost and selenium. Egyptian Journal of Soil Science, 63(2): 243-253.

Es-sbihi F. Z., Hazzoumi Z., Aasfar A. and Joutei K. A. (2021). Improving salinity tolerance in Salvia officinalis L. by foliar application of salicylic acid. Chem. Biol. Technol. Agric., 8:25, https://doi.org/10.1186/s40538-021-00221-y

Farooq, M., Rehman, A., Al-Alawi, A. K., Al-Busaidi, W. M. and Lee, D. J. (2020). Integrated use of seed priming and biochar improves salt tolerance in cowpea. Scientia Horticulturae, 272, 109507.

Garcia, C.S.; Menti, C.; Lambert, A.P.F.; Barcellos, T.; Moura, S.; Calloni, C.; Branco, C.S.; Salvador, M.; Roesch-Ely, M. and Henriques, J.A. (2016). Pharmacological perspectives from Brazilian *Salvia officinalis (Lamiaceae)*: Antioxidant, and antitumor in mammalian cells. An. Acad. Bras. Ciências 88, 281–292.

Ghorbani, A. and Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinal is and its components. J. Tradit. Complementary Med.7, 433–440.

Gomez; K. A. and Gomez, A.A (1984). "Statistical Procedures for Agricultural Research". John Wiley and Sons, Inc., New York.pp:680.

Guenther, E. (1972). The production of essential oils. In The Essential Oils, 2nd ed.; Guenther, E., Ed.; Krieger Publishing Company: Malabar, FL, USA, Volume 1, pp. 87–226.

Liu, J., Yang, H., Gosling, S. N., Kummu, M., Flörke, M., Pfister, S. and Oki, T. (2017). Water scarcity assessments in the past, present, and future. Earth's future, 5(6), 545-559.

Mehdizadeh, L., Moghaddam, M. and Lakzian, A. (2019). Alleviating negative effects of salinity stress in summer savory (*Satureja hortensis* L.) by biochar application. Acta Physiologiae Plantarum, 41, 1-13.

Noémi J. V., Mihály J., Árpád S., Tímea S., Ildikó K., Szilvia T. and Ágnes. (2023). The effect of application of effluent water on sage (Salvia officinalis L.) yield and quality in lysimeters. Folia Hort. 35(1) (2023): 163–177, DOI: 10.2478/fhort-2023-0013

Patel, A., Khare, P. and Patra, D. D. (2017). Biochar mitigates salinity stress in plants. Plant Adaptation Strategies in Changing Environment, 153-182.

Peterburgski, A. V. (1968)."Handbook of Agronomic Chemistry". Kolos Puplishing House, Moscow, (in Russian, pp. 29-86).

Rajput, R. D. and Patil, R. P. (2017). The comparative study on spectrophotometric analysis of chlorophyll and carotenoids pigments from non-leguminous fodder crops. International Journal of Innovative Science, Engineering and Technology, 4(7): 140-148.

Smith, K. and Mullins, C. E. (1991). Soil analysis. Marcel Decker.

Tandon, H. L. S. (2005). Methods of analysis of soils, plants, waters, fertilizers & organic manures. Fertilizer Development and Consultation Organization.

Teklić, T., Špoljarević, M., Stanisavljević, A., Lisjak, M., Vinković, T., Parađiković, N. and Hancock, J. T. (2010). Assessment of the influence of different sample processing and cold storage duration on plant free proline content analyses. Phytochemical Analysis, 21(6), 561-565.

Valiyari, S.; Baradaran, B.; Abdolalizadeh, J.; Bandehagh, A.; Azadmehr, A. and Hajiaghaee, R. (2013). Inhibitory and cytotoxic activities of Salvia officinalis L. extract on human lymphoma and leukemia cells by induction of apoptosis. Adv. Pharm. Bull. 3, 51.

Walinga, I., Van Der Lee, J. J., Houba, V. J., Van Vark, W. and Novozamsky, I. (2013). Plant analysis manual. Springer Science & Business Media.

Wang, J. and Wang, S. (2019). Preparation, modification and environmental application of biochar: a review. Journal of Cleaner Production, 227: 1002-1022.

© The Author(s). 2022 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise