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Abstract: Climate change is altering mosquito distribution by expanding the 

geographic range of species like Aedes aegypti (Diptera: Culicidae) into 

previously inhospitable areas due to rising temperatures and changing 

precipitation patterns. This shift increases the risk of mosquito-borne diseases 

in regions that were once unaffected, posing new public health challenges 

globally. Ae. aegypti is the vector that spreads the arboviral illnesses dengue 

fever, chikungunya, and zika. Studying Ae. aegypti's probable geographic 

distribution habitats in Africa under present and projected climatic 

circumstances is the goal of the current research. The scenarios used are the 

Beijing Climate Center Climate System Model (BCC-CSM2-MR) with two 

Shared Socio-economic Pathways (SSPs) for each of the general circulation 

model (GCMs): SSP126. Altitude, temperature, seasonality (standard 

deviation *100; bio4), and yearly precipitation (bio12) were found to be the 

most significant environmental factors influencing Ae. aegypti's spread. 

Key words: Mosquitoes, prediction, geographic distribution, R Package, 

(BCC-CSM2-MR). 
 

 

1. Introduction 

Aedes aegypti hold significant medical importance as vectors of 

several debilitating human diseases (Monath 1988, Diamond, 2009). 

These mosquitoes are primary carriers of the viruses responsible for 

dengue fever (El-Bahnasawy et al., 2011), Zika virus (Morsy, 2018), 

chikungunya (Mostafa, 2002), and yellow fever (Carter, 1931). 

According to the report of WHO, 2003 the infectious and vector-borne 

diseases epidemiology may be altered due to changes in host ranges 

from climate change.   
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Most climate change scenarios associate changes in the incidence of infectious diseases with 

variations in weather extremes, and variations in the transmission of communicable diseases with 

increases in average temperature (Canyon et al., 2016). Because they are poikilothermic body 

temperature varies depending on ambient temperature parasitic diseases carried by arthropod vectors, 

such as mosquitoes, are the main vectors of vector-borne diseases (VBDs), which are especially sensitive 

to changes in external climatic conditions (Rocklöv, 2020). Insect population, dispersion, and 

abundance are influenced by habitat suitability. The rate at which pathogens develop and replicate in 

mosquitoes is also influenced by temperature, which raises the danger of infection (Metcalf et al., 2017, 

Caminade and McIntyre, 2019).  

Depending on changes in mosquito vector ecology, precipitation also has a major impact on the 

dynamics of the vector-borne disease (VBD) network for diseases transmitted by vectors with aquatic 

developmental stages (Paz, 2019). Changes in climate lead to a rise in diseases carried by mosquitoes. 

The 10% rise in mosquito-borne disease (MBD) in Canada over the previous 20 years has been mostly 

attributed to climate change (Ludwig et al., 2019). This is accurate given that temperature, precipitation, 

and land use all affect the life cycles, reproduction, and feeding of mosquitoes (Wudel and Shadabi, 

2016). Likewise, climate change affects the range, seasonality, and habitat of disease-carrying 

mosquitoes. Host range changes affect biodiversity and provide a risk to ecological processes, 

particularly for insects in many global ecosystems (Nooten, 2014). Conversely, a significant 

contributing cause to the recurrence of insect pests is climate change. Changes in global temperature 

would force many pests that are detrimental to people, such as mosquitoes (Culicidae), to relocate to 

new habitats (Reiter. 2001). 

Future patterns of mosquito-transmitted diseases like malaria and dengue have been projected by 

studies examining the consequences of climate change. These trends include expanding the spatial 

dispersion of these diseases and intensifying their transmission (Hales et al., 2002 and Ogden et al., 

2008). Data are beginning to indicate that some mosquito species' host range ranges are already 

beginning to change as a result of shifting climatic conditions, and it is predicted that this pattern will 

likely continue as a result of climate change (Ogden et al., 2008). Abiotic factors like terrain and climate 

have a bigger impact on mosquito abundance at larger geographical scales than biotic factors like 

predation, competition, and vector control measures do at smaller regional dimensions (Brownstein et 

al., 2005).  Ecological niche models (ENM) and bioclimatic envelope models have been used in an 

increasing number of research to model the possible impacts of climate change on species distributions 

(Gonzalez et al., 2010). Both adult and juvenile stage characteristics of insects, such as larval growth 

rates, development durations, body size, fertility, and longevity, are significantly influenced by the 

environment (Loetti et al., 2011). Temperature is an especially important abiotic factor for mosquitoes 

and other arthropods since it directly affects their mortality, life expectancy, and rates of development 

that could lead to morphological changes (Debat et al., 2003 and Beck, 2013).  

 Species distribution models (SDMs) are currently one of the most widely used scientific 

approaches for determining the effects of climate change on biodiversity due to the growing interest in 

biogeographic studies and conservation (Beck. 2013). These models are successfully and widely used 

to assess the ecological and evolutionary dynamics that affect the global distribution of species and the 

suitability of their habitat (Bosso et al., 2013, Zhu et al., 2013). Species distribution models (SDMs) 

are widely used in various ecological, biological, and biogeographical applications to anticipate past, 

present, and future species distributions (Guisan et al., 2017). The primary element influencing the 

spatial distribution of biodiversity worldwide has been extensively researched: climate (Araújo et al., 

2005).  

2. Materials and Methods  

Global Distribution Data  

The Global Biodiversity Information Facility (GBIF.org, https://doi.org/10.15468/dl.sgpgg0 , 

accessed in December 2022) provided the occurrence data for Ae. aegypti.  Preserved specimens and 

human observations served as the sources of the 39424 geo-referenced, coordinate-based records found 

in the downloaded database. In order to remove duplicate geographic information and points outside the 

shapefile of the globe map, we verified the records using ArcGIS 10.3 (ESRI, 2014). After deleting the 

https://doi.org/10.15468/dl.sgpgg0
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corresponding missing values of the resampled environmental parameters of topography and climate, 

this produced 2369 distribution points, which were subsequently further reduced into 16,950 records 

(see Figure 1). 

 

 

Fig. (1(. Observed distribution of Ae. Aegypti in Africa 

 

Environmental Variables and Multicollinearity  

Twenty characteristics were gathered as predictors to model the likely environmental niche of Ae. 

aegypti based on the dataset for its current presence. Specifically, the WorldClim database 

(http://www.worldclim.org) was used to gather data on 19 bioclimatic layers (bio01-bio19) and one 

topographical variable (elevation) at a spatial resolution of 2.5 arcminutes (5 km at the equator) 

(Hijmans et al., 2005). According to earlier studies, these environmental characteristics should be taken 

into account above all others when estimating the potential dispersal of a species (Yi et al., 2018). 

Global general circulation models (GCMs): BCC-CSM1.1 (Beijing Climate Centre–Climate 

System Modelling 1.1) were used to assess the potential effects of climate change on the distribution of 

Ae. aegypti (http://forecast.bcccsm.ncc-cma.net/web/channel-34.htm). The WorldClim database 

provided the global climate model BCC-CSM1 for both the 2030 (average for 2021–2040) and 2090 

(average for 2081–2100) eras.  

We used global climate models (GCMs): BCC-CSM2-MR. For each of the GCMs, two Shared 

Socio-economic Pathways (SSPs) SSP126 and SSP585 were chosen. Next, it was determined that the 

two SSP emission scenarios represented a low and high forcing scenario of climate change coupled with 

economic development.  

Model Performance 

The goal of this study was to find uncorrelated environmental factors that affected the distribution 

of species. For the purpose of simulating present and projecting future possible suitable distribution 
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locations, the SDM package in R, version 4.1.5, can be utilized (https://www.rproject. org, retrieved on 

March 1, 2021). Description and modeling of the occurrence data, thirty percent were used for testing 

and the remaining seventy percent for training. The hinge, product, linear, and quadratic functions were 

all set to automatic.  

In order to avoid multicollinearity problems, predictor variables that were correlated and had 

variance inflation factor (VIF) values greater than five or a correlation threshold of 0.75 were eliminated. 

In the R process, three environmental variables (bio4, bio12, and Alt) were maintained. In this way, 

every one of these non-linear variables apart from elevation was used to model Ae. aegypti in the context 

of hypothetical future global warming scenarios. Twenty environmental variables' variance inflation 

factors (VIFs) were examined in order to eliminate multicollinearity and select the best-fitting predictors 

with the highest apparent contribution power to the model.  Based on their variance inflation factor 

(VIF) we deleted the highly correlated variables, to reduce overfitting of SDM models, which measures 

how strongly each predictor can be explained by the rest of the predictors (Naimi et al., 2016).   

The variables with VIF values larger than five and a correlation criterion of 0.75, as followed 

by28, were eliminated using the vifcor and vifstep functions of the package "usdm" (Naimi, 2015) in R 

Version 4.1.1 to perform a VIF analysis. Using the function "SDM" package in R Version 4.1.1, the 

relative relevance of predictor variables was evaluated.  

3. Results  

Climatic Variables Importance  

The obtained results supported the use of three uncorrelated predictor variables in R models 

(Table 1). Temperature Seasonality (BIO4), Altitude (Alt), and Annual Precipitation (Bio 12) (mm) all 

demonstrated excellent sensitivity in Ae. aegypti. It was discovered that these significantly affected how 

suitable Ae. aegypti is for the current and upcoming climate. The distribution of Ae. aegypti was 

influenced by three environmental data points that were deemed most significant: bioclimatic factors. 

The most significant environmental variable that contributed most to the spread of Ae. aegypti was 

temperature, followed by seasonality (BIO4) (91.8%) and altitude (7.0%). The least significant variable 

was annual precipitation (mm) (bio12) (1.2%). The table below (Table 1 and Figure 2) summarizes the 

corresponding variable contributions. 

 

Table 1. Permutation importance of variables for modeling 

Code Variables Units Percent Contribution 

bio_04 
Temperature Seasonality 

(standard deviation *100). 
°C 91.8 % 

Alt Altitude m 7.0 % 

bio_12 Annual Precipitation (mm) mm 1.2 % 

 

Model Evaluations and Critical Environmental Variables   

Potential habitats were estimated using the model, which had a mean AUC of 0.85. The models 

of Ae. aegypti had very high mean AUC values. Since the predicted results were extremely accurate, 

the findings of the possible distribution area could also be trusted (refer to Table 2).  

The likelihood of the world existing might be evaluated based on the model's response curves for 

environmental factors. Sharp drops in the probability of Ae. aegypti occurrence were seen as annual 

precipitation (mm)) (bio12) and altitude (Alt) increased. Figure 3 illustrates the gradual increase in the 

probability of Ae. aegypti's presence in response to temperature seasonality (Bio4).  

 



Abdelwahab et al., 2024 

 

   Future Appl. Sci., 2 (2024) 18-30                                                       22 of 30 
 

 

Fig. (2). Variable’s importance to the prediction distribution model of Ae. aegypti 

 

Table (2). The Area Under the Curve (AUC) values for the Ae. aegypti climatic suitability models 

run in R Version 4.1.1 

Methods 
Area Under the Curve 

(AUC) 

True Skill Statistic 

(TSS) 
Deviance 

Generalized Linear 

Model (GLM) 
0.85 0.62 0.89 

 

 

 

Fig. (3). Response curves of the most important predictor variables used in distribution 

modelling of Ae. aegypti 
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Climatic Suitability Under Current and Future Climate Change Current Potential Distribution 

of Ae. aegypti 

When forecasting the climatically suitable locations for Ae. aegypti establishment under present 

and future climate scenarios, the models that used three bioclimatic factors showed varying findings. 

The findings showed that the possible global distribution pattern for Ae. aegypti, as depicted in Figure 

4. 

In Africa, the models showed very high and excellent habitat suitability of Ae. aegypti in the 

countries of middle Africa ranges from Ethiopia in the east to Mali, Chad, and Guinea in the west. While 

moderately suitable areas for Ae. aegypti in the north and South Africa. In North Africa, the resulting 

current models indicated low suitability in Ae. aegypti distribution over its land except for some parts 

of the north-western coast of Africa. 

North and South Africa illustrated low suitability in the resulting models while Mozambique and 

west of Zimbabwe showed a suitable habitat. Finally, middle Africa illustrated high and very high 

suitability, but areas near the boundaries in the north and south appeared moderate suitability for the 

distribution of Ae. aegypti (see Figure 4).  

 

Fig. (4). The predicted current distribution range of Ae. aegypti 

 

The Predicted Future Potential Distribution Areas of Ae. aegypti 

Figure 5 shows the models for Ae. aegypti's possible distribution under future climate change 

scenarios BCC-CSM2-MR_ssp126 and ssp585 for the years 2020 and 2080. Distribution patterns 

throughout the scenarios between the present-day and future models showed reasonable similarities 

except in some regions. Furthermore, the future predictions showed some differences between BCC-

CSM2-MR in 2020 and 2080. Under low hypothetical emissions of greenhouse gases (GHG) (BCC-
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CSM2-MR_ssp126 in 2020 and 2080), the changes are simple and usually not notable on all countries. 

Although the species will lose some of their habitats as in Mauritania, Mali, Niger, Chad (Figure 5a, b). 

Additionally, for the highest hypothetical emissions of GHG (BCCCSM2-MR_ssp585 in 2020 and 

2080), the insect will lose and gain almost the same area as in (BCC-CSM2-MR_ssp126 in 2020). The 

model appeared that under hypothetical emissions the insect invades large area in south, north Africa 

(Figure 5c, d). 

 

Fig. (5a). Potential future distribution under BCC-CSM2MR_ssp126_2021-2040 scenarios 

 

 

Fig. (5b). Potential future distribution under BCC-CSM2-MR_ssp126_ 2080-2100 scenarios 
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Fig. (5c). Potential future distribution under BCC-CSM2-MR_ssp585_2021-2040 scenarios. 

 

 

Fig. (5d). Potential future distribution under BCC-CSM2-MR_ssp585_2080-2100 scenarios 
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4. Discussion  

The abundance of Ae. aegypti was primarily influenced by four bioclimatic variables: altitude 

(Alt), temperature, seasonality (BIO4), and annual precipitation (mm) (bio12). These outcomes 

concurred with those of other studies (Wudel and Shadabi, 2016). These factors might be crucial in 

determining where Ae. aegypti is found. Changes in temperature and precipitation are the primary 

impacts of climate change on endemic mosquito populations. The potential habitat available to 

mosquitoes for laying eggs and raising larvae is often increased by an increase in precipitation.  

The relationship is often non-linear: while excessive or violent precipitation may have a leaching 

effect by destroying mosquito eggs and flushing larvae out of specific habitats, above-average rainfall 

typically increases mosquito populations by increasing the availability of standing water (Clements, 

1992). Raising the temperature can hasten the mosquito life cycle's juvenile phases, boosting rates of 

reproduction and leading to exponential population expansion (Alto and Juliano, 2001). Warm weather 

contributes to mosquito population and development, but it also amplifies virus replication in 

mosquitoes very quickly. This is consistent with recent studies (Reisen et al., 2014; Rios, 2009) that 

found that one of the most significant abiotic variables affecting the physiology, behavior, ecology, and, 

consequently, the survival of insects, is ambient temperature.  

Climate factors like rainfall, ambient temperature, and relative humidity have a direct impact on 

the length of larval development, survival of both larvae and adults, and gonotrophic cycle time of Ae. 

aegypti, the primary dengue vector (Naish et al., 2014). Furthermore, research on the threshold impacts 

of climate on dengue in Taiwan revealed a favorable association between temperature and rainfall and 

the larval and adult densities of Ae. aegypti (Tran et al., 2020). Temperature-related climatic variations 

have an impact on insect development and reproduction (Costa et al., 2010; Carrington et al., 2013).  

Climate change scenarios involving higher temperatures resulted in a shorter pathogen 

development period within the vector until it becomes transmissible (Winokur et al., 2020), as well as 

an increased distribution of Ae. aegypti worldwide and an accelerated adult emergence (Kamal et al., 

2018 and Iwamura et al., 2020). Numerous research, including regional and worldwide forecasts, have 

projected future Aedes mosquito distributions and dengue hazards based on the GCMs of various climate 

change scenarios (Ryan et al., 2019 and Pörtner et al., 2022).  

When different models are compared for the same scenario, different forecasts have different 

results. In the present scenario, for example, the BCC-CSM1 model predicted that the area of Ae. aegypti 

that is moderately suitable for human habitation will decrease in the future, while the future model 

predicted that it will slightly increase. Climate change is expected to affect the future spread of viral 

transmission by endemic mosquitoes due to the rise in populations and numbers of these species.  

An overview of the likely future distribution of Ae. aegypti and dengue transmission is provided 

by the prospective alterations indicated by the results of climate change modeling. Certain regions that 

are currently home to mosquitoes and dengue fever may become unsuitable due to climate change. Every 

scenario taken into account for this analysis points to a general future reduction in the climatically 

favorable locations for Aedes. Some of the presently significant hotspots are covered by this decreased 

potential region for Ae. aegypti and dengue. 

These findings identify regions where future climate suitability is predicted to decline, which may 

help decision makers when allocating resources for mosquito management. Because of future climatic 

changes, this study has identified additional regions of the world that might be vulnerable to Ae. aegypti 

and dengue transmission. These locations may need to implement strategic control measures to stop the 

disease's spread. Such locations may require a more comprehensive risk assessment for mosquito 

transmission.  

In order to assess and control mosquito risk and identify danger levels, projections of habitat 

appropriateness are essential. The response of Ae. aegypti and dengue transmission to climate 
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fluctuations must be included in such assessments. This study particularly identifies areas that are 

currently and will continue to be at risk from mosquitoes. Health managers can use our results to assist 

them prioritize locations for eradication and identify regions that need pest treatment. Given that 

different MBDs mosquitoes, reservoirs, and the environment have varying degrees of dependence on 

climate change, it is challenging to forecast how these entities will respond to it. Thus, even a slight 

alteration in the climate could lead to a notable rise in the spread of arboviruses. Additionally, the 

transmission cycles, reservoirs, and vectors of each MBD are unique. Since these may be rare in certain 

places of the world, variations in the occurrence of MBDs will occur depending on the environment or 

region.  

5. Conclusion  

When building models to assess the habitat suitability of specific insect pest species, GIS 

techniques and climatological data can be utilized. In our work, we have successfully simulated the 

global distribution of Ae. aegypti, both present and future. With a geographical resolution of 5 km2, the 

models pinpointed current at-risk areas as well as potential areas with sufficient habitat that might see 

future incursions of Ae. aegypti worldwide. Practical management solutions are required because 

controlling Ae. aegypti is a challenging and expensive task, and there are no vaccinations available for 

the majority of the viruses it transmits (Facchinelli et al., 2023). When determining whether to expedite 

adaptive management measures for pests that have a significant impact on human health, decision-

makers and quarantine authorities may find these model patterns and their changes over time to be 

helpful.  

Climate change is expected to have a major impact on endemic mosquito populations worldwide 

and, as a result, MBDs including dengue fever, chikungunya, and Zika. The model we have created also 

makes it possible to do more thorough local research, especially in areas where Ae. aegypti mosquitoes 

are predicted to thrive. By adding ecological elements like altitude and meteorological variables, the 

model's local resolution for these disease transmission vectors can be made more predictively accurate. 
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