

Article

Improving the Growth and Productivity of the *Nigella sativa* L. Plant by Using Some Natural Stimulants

Reham Magdi Mohammed^{1,*} and Rasha El Sayed Hamed²

¹Medicinal and aromatic plants department, Horticulture Research Institute, Agriculture Research Center.

²Soil fertility and plant nutrition department, Soils, Water, and Environmental Research Institute, Agriculture Research Center.

*Corresponding author: rokamagdi2009@yahoo.com

Future ~~Science~~ Association

Available online free at
www.futurejournals.org

Print ISSN: 2687-8151

Online ISSN: 2687-8216

Received: 25 July 2024

Accepted: 5 September 2024

Published: 20 September 2024

Publisher's Note: FA stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Copyright: © 2022 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<https://creativecommons.org/licenses/by/4.0/>).

Abstract: Recently, there is a growing global trend to reduce the use of chemical fertilizers in agriculture due to their negative effects on soil quality, environmental health, and rising production costs. Therefore, recent agricultural strategies focus on integrating natural growth stimulants and eco-friendly inputs. Accordingly, this study was conducted during the 2021/2022 and 2022/2023 seasons at El Barmoon Farm, Mansoura Horticultural Research Station, Dakahlia Governorate, Egypt, to evaluate the response of *Nigella sativa* L. plants to reduced mineral fertilization combined with potassium humate as a soil amendment, along with natural foliar stimulants. The main plot treatments included three fertilization levels: 100% of the recommended NPK dose, 75% NPK plus potassium humate at 2 kg/fed, and 50% NPK plus potassium humate at 2 kg/fed. The subplot treatments involved five foliar applications: no spray, seaweed extract at 0.5 mL/L, compost tea at 20 L/ha, sodium selenite at 8 g/L, and potassium silicate at 4 mL/L. The results showed that mineral fertilizers can be safely reduced to 75% and even 50% of the recommended dose when combined with potassium humate as a soil amendment, without compromising plant performance. All foliar treatments significantly improved the studied characteristics. The compost tea foliar application was the most effective. The interaction between 75% NPK plus potassium humate combined with foliar application of compost tea achieved the highest overall performance in vegetative growth, seed yield, and fixed oil productivity across both seasons. These findings confirm that combining natural soil amendments with eco-friendly foliar stimulants can effectively reduce the use of mineral fertilizers while maintaining high growth and productivity in *Nigella sativa* L.

Key words: *Nigella sativa* L., mineral fertilization, potassium humate, natural growth stimulants.

1. Introduction

Black cumin (*Nigella sativa* L.) is an annual aromatic and medicinal plant belonging to the Ranunculaceae family (**Randhawa and Alenazi, 2016**). It is widely cultivated in the Mediterranean region, the Middle East, and parts of Asia for its seeds. Egypt is one of

the best sources of the seeds. It grows optimally in temperatures between 15°C and 25°C and tolerates a range from 5°C to 30°C (**Kant et al., 2010**). The seeds contain two main types of oil: a volatile aromatic oil and a larger portion of fixed oil that is rich in essential fatty acids, especially linoleic acid, which makes up more than 50% of the total fatty acids (**Atta, 2003**). Additionally, the black cumin seeds contain more than one hundred bioactive compounds, including thymoquinone, alkaloids, flavonoids, saponins, tannins, proteins, minerals, and various phytochemicals. These confer significant health benefits as antibacterial, anti-inflammatory, antihistaminic, antioxidant, antitumor, anti-diabetic, and hepatoprotective agents (**Ahmad et al., 2013**). It has also demonstrated protective effects against kidney injuries, bone infections, and various chronic disorders. The growing global interest in medicinal plants has further emphasized *Nigella sativa* L. as an important crop for producing pharmaceutical and nutritional oils, serving as a natural alternative to synthetic drugs and chemical additives (**Salama et al., 2023**).

Potassium humate, containing macro- nutrients and micronutrients, further enhances soil structure, cation exchange capacity, and water-holding capacity, while reducing soil compaction. It also synergizes effectively with mineral fertilizers such as NPK to achieve higher efficiency and economic benefits. Additionally, potassium humate is a vital organic substance that enhances plant growth, productivity and stress tolerance by improving soil physical chemical, and biological properties, increasing microbial activity, and boosting nutrient availability and uptake (**Idrees et al., 2018**). They stimulate hormonal activity, particularly auxins and cytokinins, which increase enzyme functions, chlorophyll content, membrane permeability, and photosynthesis, which promotes better plant growth under both normal and stress conditions (**Abu-Zinada and Sekh-Eleid, 2015**). Humic substances act as hormone- growth stimulants, improve plant metabolism, facilitate nutrient recycling, and contribute significantly to sustainable agriculture and improved crop performance across various environmental conditions (**Waraich et al., 2011**). Many studies have shown significant improvements in yield and quality for certain crops; for example, **Awaad et al. (2020)** on faba beans summarized that increasing rates of potassium humate individually led to notable increases in growth, yield parameters, and mineral content. **Abou Basha et al. (2021)** concluded that applying potassium humate is important for improving maize growth, yield characteristics, production, and nutrient contents (N, P, and K) under water stress conditions. **Mahdi et al. (2021)** reported that potassium humate application improved tissue water status by increasing membrane stability index and relative water content, along with enhanced growth traits, physio-biochemical properties, and nutrient levels. These improvements translated into higher yields and better components of faba bean plants grown in newly reclaimed soils. **Mohammed et al. (2021)** indicated that potassium humate can serve as a partial, inexpensive supplement for potassium fertilization in tomato plants, significantly affecting growth and all measured yield characteristics when grown in sandy soil. **Hassan et al. (2024)** on potatoes confirmed that potassium humate application can enhance tolerance to water shortages by increasing total chlorophyll content, soluble sugars, and proline levels. *Vicia faba* L.

Sodium selenite is one of the main inorganic forms of selenium used for supplementation and biofortification. Although selenium is not essential for plants, they absorb inorganic selenium from soil mainly as selenate (Se^{6+}) and selenite (Se^{4+}). Selenite, in particular, is taken up through phosphate transporters and quickly converted into organic Se forms inside plant tissues (**Gong et al. 2018**). Selenite is considered more effective than selenate in stimulating plant antioxidant responses, such as increasing glutathione peroxidase activity, which helps improve cellular redox balance. Sodium selenite supports antioxidant protection, immune function, and redox regulation; however, it must be used carefully in both human nutrition and plant biofortification due to its narrow safety margin **Nothstein et al. (2016)**. **Boghdady et al. (2017)** demonstrated that a low concentration of 10 ppm promoted anatomical features of the stem and leaves, including a significant increase in stem diameter, cortex thickness, the number per vascular bundle, the average length and width of vascular bundles, the number of cortical layers, and the average diameter of *Brassica oleracea* vessels. **Tiji et al. (2022)** reported that coating black cumin (*Nigella sativa* L.) seeds with nano-sodium selenite significantly enhanced the antimicrobial

activity of the extracted oil and increased its effectiveness against plant-pathogenic microorganisms. **Xu and Li (2023)** found that sodium selenate supported the growth of oilseed rape. Additionally, applying sodium selenite to *Taraxacum mongolicum* improved its nutritional and antioxidant profile by increasing soluble sugars, proteins, flavonoids, phenolics, and vitamin C, while also boosting antioxidant enzyme activity and reducing malondialdehyde levels (**Cheng et al., 2024**).

Seaweed extracts (SWE) contain nutrients like nitrogen, phosphorus, potassium, trace elements, amino acids, vitamins, and organic acids (**Valencia et al., 2018**). These elements support the plant's basic nutrition, especially in poor soils or when chemical fertilizers are limited (**Nasir et al., 2022**). Seaweed fertilizer or extract is known for containing plant hormones such as auxins, cytokinins, and gibberellins, along with other compounds (biotins, sugars, polysaccharides, etc.) that encourage plant growth. These hormones promote increased cell division, root and stem development, leaf expansion, and enhanced photosynthesis (**Ali et al., 2021**). Many studies have shown the positive effects of seaweed extract on the growth of *Nigella sativa* L., its oil content, and overall yield (**Mohamed et al., 2020; Danesh et al., 2021; Salama et al., 2023**).

Potassium silicate is a highly soluble source of potassium (K) and silicon (Si), widely used in agricultural systems primarily as a silicon amendment with the added advantage of supplying available potassium. Numerous studies have demonstrated that potassium silicate improves plant growth, nutrient uptake, and yield quality across various crop species (**Massoud et al., 2024**). Silicon supplied through potassium silicate plays a vital role in enhancing photosynthesis, water-use efficiency, nutrient absorption, cell division, and the development of leaf pigments. It also strengthens plant cell walls, thereby improving structural integrity and overall plant vigor. In horticultural and field crops, potassium silicate contributes significantly to improved yield, fruit quality, and storage stability. It has been reported to increase vegetative growth and promote higher concentrations of N, P, and K in plant tissues. Potassium silicate serves as an effective agricultural input, supporting plant growth, increasing stress tolerance, and enhancing both productivity and quality across diverse crop systems. Numerous studies have confirmed that Potassium silicate improves vegetative growth, chlorophyll content, and nutrient uptake, and has also been shown to stimulate root development, increase seed oil components, and enhance seed quality of *Nigella sativa* L. (**El-Leithy et al., 2019; Salama et al., 2023**).

Compost tea (CT) is a liquid organic extract made by steeping mature compost in water at ratios usually between 1:5 and 1:10 (v/v) for 2 to 15 days. It can be prepared either aerobically (aerated compost tea) or anaerobically (non-aerated tea). The quality and biochemical properties of compost tea depend on several factors, including the type of compost used, the compost-to-water ratio, aeration conditions, and the duration of extraction (**Gonzalez-Hernandez et al., 2022**).

Compost tea contains a wide array of soluble organic compounds, macro- and micronutrients, and helpful microorganisms. These microbial communities, such as bacteria, fungi, actinomycetes, and protozoa, play a vital role in supporting plant growth and reducing pathogens through mechanisms like improved nutrient uptake (e.g., nitrogen fixation, phosphorus solubilization, and iron acquisition), production of bioactive compounds, competition, and antagonism against soil-borne pathogens (**Ibrahim et al., 2019**). Compost tea is increasingly regarded as an environmentally friendly, sustainable alternative to chemical fertilizers and fungicides (**Shaban et al., 2015**), helping to improve soil health, boost organic matter, enhance nutrient cycling, and build more resilient crop systems. Adding beneficial microorganisms like *Trichoderma* spp. to compost tea can further enhance its ability to promote growth and suppress disease effects. These results align with **Abdou et al. (2023)** and **Al-Fraihat et al. (2023)**, who found that compost tea application improved biochemical traits, morphophysiological characteristics, seed yield, and oil quality of *Nigella sativa*.

2. Materials and Methods

2.1. Experimental Site and Soil Characteristics

At El Barmoon Farm, Mansoura Horticultural Research Station, Dakahlia Governorate, Egypt. a field experiment was conducted during two rabi seasons at the last week of November 2021/2022 and 2022/2023.

Data in Table 1 shows the average physical and chemical properties of the initial soil at a depth of 0–0.5 m. The soil was clayey in texture.

All composite soil samples collected before the experiment were evaluated for physical properties described by **Black (1965)**, whereas chemical soil analysis was conducted according to **Page et al. (1982)**.

Table (1). The physical and chemical properties of the experimental soil

Mechanical analysis (%)			Chemical analysis					
soil texture	Sand %	Silt %	Clay %	CaCO ₃ %	pH	EC ds m ⁻¹ (1:5)		
Clay	8.2	20.4	70.4	0.001	7.20	0.17		
Available (mg/100 g soil)			Cations (meq/100 g soil)					
N	P	K	Ca ⁺⁺	Mg ⁺⁺	Na ⁺	K ⁺	CO ₃ ²⁻	HCO ₃ ²⁻
51	7.5	129	0.40	0.33	1.61	0.08	0.00	0.22
							Cl ⁻	SO ₄ ²⁻
							0.69	1.12

2.2. Plant Material and Growth Conditions

Black cumin seeds were obtained from the Department of Medicinal and Aromatic Plants, Ministry of Agriculture, Giza, Egypt, and were sown during the last week of November at a rate of 4 kg·fed⁻¹ in both growing seasons. Each experimental unit covered an area of 7.5 m² (3 × 2.5 m), consisting of three planting rows, each 3 m long and 0.6 m wide. Seeds were planted in hills 25 cm apart, with 3–4 seeds per hill, and thinning was carried out to maintain one plant per hill at 30 days after sowing. Before sowing, organic fertilizer was applied to all plots at varying rates.

2.3. Treatment Applications and Experimental Design

NPK Applications: The recommended N, P, and K doses of 150, 70, and 60 kg·fed⁻¹, respectively, were applied. Phosphorus was supplied as calcium superphosphate (15.5% P₂O₅) during soil preparation. Nitrogen was applied as ammonium sulfate (20.6% N), along with potassium as potassium sulfate (48% K₂O), in three separate applications. In addition, treatments receiving 75% of the recommended dose, as well as those receiving 50% of the recommended dose, were also included during the growing season, according to the recommendations of the Ministry of Agriculture and Land Reclamation.

Potassium humate, sodium selenite, and potassium silicate were obtained from El-Ahram Company for Mining and Natural Fertilizers, Maadi, Cairo, Egypt, at a rate of 96% by weight.

A commercial seaweed extract product was applied containing 1% nitrogen, 2.5% potassium, 0.17% calcium, 0.43% magnesium, 0.06% iron, 2.2% sulfur, 0.99 ppm zinc, 3.87 ppm boron and 10–12% alginic acids.

Compost tea (CT) was produced from mature compost derived from garden wastes (grass clippings and pruning residues). The compost was prepared in aerated piles for 180 days with regular turning and moisture maintained at 60%. The mature compost was then mixed with previously aerated tap water at a 1:5 (v/v) ratio and brewed for five days under continuous daily aeration. After filtration, the CT was stored in dark containers at room temperature until use. According to the authors (**Gonzalez-Hernandez et al., 2022**). The chemical composition and microbial content of the compost tea used in this study are presented in Table 2.

Table (2). The chemical composition of compost tea

Chemical composition of compost tea	
Properties	Value
pH [at a soil-to-water(w/v) ratio of 1:2.5]	7.26
Ece (dS·m ⁻¹ ; soil paste extract)	2.90
CaCO ₃ (g·kg ⁻¹)	1.52
O.M (%)	55.43
O.C (%)	35
N (%)	1.29
P (g·kg ⁻¹)	7.10
K (g·kg ⁻¹)	9
N-fixing bacteria cfu mL ⁻¹	2.7 × 10 ⁷
Trichoderma sp. and fungi cfu mL ⁻¹	2.7 and 8.8 × 10 ²

A split-plot arrangement in a complete randomized block design, in three replicates and nine plants/ replicate, was executed in this experiment with three treatments (NPK recommended dose), 75% NPK plus potassium humate at 2 kg/fed, and 50% NPK plus potassium humate at 2 kg/fed in the main plots. the sub-plot treatments involved five foliar applications {control (no spray), sodium selenite (8 g/L), seaweed extract (0.5 ml/L), potassium silicate (4 ml/L) and compost tea (20 L/fed)}. Foliar spraying was performed three times during the growing season at 45, 75 and 105 days after sowing.

2.4. Morphological Characteristics and Yield Attributes Recorded

Morphological Characteristics: Nine plants were randomly selected from each treatment at full bloom (120 DAS) to assess the morphological parameters, including plant height (cm), number of branches/plants, and plant fresh and dry weights.

Yield Attributes: At maturity (180 DAS), all plants from each experimental unit were harvested to estimate the number of capsules/plants, seed yield/plant (g), and seed yield/Fed (Kg).

2.5. Seed Fixed Oil and Composition

The percentage of fixed oil in seed samples was determined using the Soxhlet extraction method (AOAC, 2007). Fixed oil was extracted from 100 g of seeds using a Soxhlet apparatus with petroleum ether (40–60 °C). The extracted oil was then dried over anhydrous sodium sulfate and stored in darkness at –20 °C until further analysis. The weight was recorded and calculated by using the following formula,

$$\text{Fixed oil (\%)} = \frac{W_2 - W_1}{W} \times 100$$

W1 Initial weight of the jar (g), W2 Final weight of the jar (g) and W Weight of the sample (g)

oil yield per plant and per feddan was calculated by using the following formula

$$\text{Fixed oil yield per plant or feddan} = \frac{\text{fixed oil content \%} \times \text{seed yield per plant or feddan kg}}{100}$$

2.6. Minerals Content (N, P, and K+)

The nutrient content (N, P, and K⁺) of *Nigella sativa* L. leaves was determined (AOAC, 1990), Nitrogen content was assessed using the Kjeldahl method (Cottenie *et al.*, 1982). Leaves were oven-dried and wet-digested in a mixture of HCO₄ and H₂SO₄ (1:3, v/v). Phosphorus content was measured using a spectrophotometer, while potassium was determined by flame photometry (Jackson, 1967).

2.7. Statistical Analysis

The present data were statistically analyzed using analysis of variance (ANOVA) for a split-plot arrangement in a randomized complete block design (RCBD), after testing for homogeneity of error variances with the Statistical Analysis System (Co Stat). Significant differences between means were

compared at ($p \leq 0.05$) using the LSD test, following the procedure outlined by (Gomez and Gomez, 1984).

3. Results and Discussion

3.1. Morphological Characteristics

The data in Table 3 clearly show that the morphological characteristics of *Nigella sativa* L. plants, including plant height, number of branches per plant, and fresh and dry weights, were significantly affected by both (A) mineral fertilization with NPK, whether applied alone or combined with potassium humate as a soil amendment, and (B) foliar application treatments (seaweed extract, compost tea, sodium selenite and potassium silicate) during the two growing seasons (2021/2022 and 2022/2023).

Regarding soil-addition fertilizers, although the NPK recommended dose resulted in significant improvements in morphological characteristics, the combination of 75% NPK plus potassium humate at 2 kg/fed showed superior performance in plant height, number of branches per plant, and both fresh and dry weights compared to the NPK recommended dose. Additionally, 50% NPK plus potassium humate at 2 kg/fed achieved results comparable to those of the full NPK recommended dose. The results above, which show a mix of reduced rates at 75% NPK or 50% of the recommended dose combined with natural amendments fertilizer, significantly improved vegetative growth characteristics in line with the findings of **Harb et al. (2011)**, **Mohamed et al. (2020)**, **Al-Fraihat et al. (2023)**, and **El-Banna (2024)** on *Nigella sativa*.

The increase in vegetative growth with potassium humate application may be due to its function in enhancing nutrient availability, stimulating root growth, and supporting physiological processes in plants (**Nassar et al., 2021**). Humic substances are recognized as natural bio-stimulants that improve nutrient absorption efficiency and promote plant growth even at lower mineral fertilizer levels.

Across all foliar treatments, each one improved vegetative growth parameters compared to the control. Compost tea showed the most notable increases in plant height (75.10 and 78.77 cm), number of branches per plant (7.77 and 9.10), and fresh (103.29 and 110.55 g) and dry weights (22.33 and 24.02 g). Similarly, potassium silicate produced close results in plant height (72.82 and 76 cm), number of branches per plant (6.99 and 8.22), and fresh (101.03 and 107.32 g) and dry weights (21.10 and 22.87 g), across both seasons. These were followed by seaweed extract and sodium selenite, while the control treatment consistently recorded the lowest values. Many studies have highlighted the positive effect of natural foliar stimulants on the vegetative growth of *Nigella sativa* L., as shown by **Ibrahim et al. (2019)**, **Abdou et al. (2023)**, and **Al-Fraihat et al. (2023)**. Compost tea was more effective for plant growth; additionally, **El-Leithy et al. (2019)** explained the beneficial role of potassium silicate. Based on the collected studies, seaweed increased growth parameters, as demonstrated by **Mohamed et al. (2020)**, **Danesh et al. (2020)**, **Salama et al. (2023)**, and **Tiji et al. (2021)**, showed that sodium selenite led to better performance in plant height, the number of branches per plant, and both fresh and dry weights.

The interaction effect showed that combining 75% NPK with potassium humate and either compost tea or potassium silicate foliar application resulted in the greatest plant height, number of branches, and both fresh and dry weights in both seasons.

Natural bio-stimulants such as compost tea, seaweed extracts, silicon, and selenium compounds enhance vegetative growth through several physiological, biochemical, and microbial mechanisms, rather than acting as direct nutrient sources. Their main modes of action can be summarized as follows: compost tea introduces beneficial microorganisms into the soil, including nitrogen-fixing bacteria and growth-promoting fungi (such as *Trichoderma*), which secrete natural growth regulators. Soluble phosphorus stimulants encourage root growth, increase root branching, and promote the development of root hairs, thereby improving the absorption of nitrogen, phosphorus, potassium and micronutrients. Additionally, seaweed extracts contain compounds similar to plant hormones (auxins, cytokinin and gibberellins), which lead to increased chlorophyll content, photosynthetic efficiency, cell division rate, and cell elongation. This explains how natural materials support vegetative growth.

Table (3). Effect of soil amendment and foliar applications and their interaction on the morphological characteristics of *Nigella sativa* L. plants for the two different growing seasons

Fertilizer addition (A)	2021/2022 season						2022/2023 season					
	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)
Plant height (cm)												
100%NPK	57.66	61.16	66.16	70.66	72.33	65.59	59	62.66	71.66	73	75.66	68.46
75%NPK +Potassium Humate	61.33	68	72.66	76.66	79.66	71.66	63.33	71.33	76.66	81	84.66	75.39
50%NPK +Potassium Humate	56.66	62.16	67.66	71.16	73.33	66.19	59.66	63.33	70.66	74	76	68.66
Mean (B)	58.55	63.77	68.82	72.82	75.10		60.66	65.77	72.99	76	78.77	
LSD 5%	A= 0.93 B= 0.49 AB= 1.48						A=1.23 B= 1.37 AB=1.78					
Number of branches / plants												
100%NPK	5	5.66	5.66	6.66	7.33	6.06	6	6	6.66	7.66	9	7.06
75%NPK +Potassium Humate	6.33	7	7.33	7.66	8.33	7.33	8	8	9	9	9.66	8.72
50%NPK +Potassium Humate	5.33	6	6.33	6.66	7.66	6.39	6	7.33	8	8	8.66	7.59
Mean (B)	5.55	6.22	6.44	6.99	7.77		6.66	7.11	7.88	8.22	9.10	
LSD 5%	A=0.55 B= 0.70 AB=1.62						A= 0.52 B=0.47 AB=0.37					
Plant fresh weight (g)												
100%NPK	91.29	96.31	99.27	98.91	100.26	97.20	95.35	99.27	103.84	103.92	107.36	101.94
75%NPK +Potassium Humate	95.82	95.98	100.85	104.85	107.28	100.33	99.09	102.12	104.87	112.86	115.59	106.90
50%NPK +Potassium Humate	93.85	94.86	98.47	99.34	102.33	98.38	96.49	101.34	104.28	105.18	108.72	103.20
Mean (B)	93.65	95.71	99.53	101.03	103.29		96.97	100.91	104.33	107.32	110.55	
LSD 5%	A= 0.38 B=2.29 AB= 2.17						A= 0.87 B=1.12 AB= 2.76					
Plant dry weight (g)												
100%NPK	17.53	18.41	19.59	19.42	19.61	18.91	18.71	19.44	20.49	20.85	21.35	20.16
75%NPK +Potassium Humate	18.60	19.38	21.12	23.69	25.23	21.60	20.36	23.04	23.78	25.40	26.72	23.86
50%NPK +Potassium Humate	18.18	18.44	20	20.20	22.16	19.79	19.74	21.42	19.89	22.37	23.99	21.48
Mean(B)	18.10	18.74	20.23	21.10	22.33		19.60	21.30	21.38	22.87	24.02	
LSD 5%	A=0.88 B= 1.04 AB=1.43						A=1.44 B= 1.86 AB=2.13					

3.2. Yield Attributes

The revealed data in Table 4 clearly demonstrate that yield attributes, including (capsule number per plant, seed yield per plant, and seed yield per feddan) of *Nigella sativa* L. were significantly affected by fertilizer addition, foliar application treatments and their interaction during both growing seasons (2021/2022 and 2022/2023).

Regarding fertilizer addition, the partial substitution of mineral fertilization with potassium humate enhanced nutrient use efficiency and improved seed productivity.

The treatment of 50% NPK plus potassium humate produced yields comparable to those obtained with 100% NPK. Meanwhile, the application of 75% NPK combined with potassium humate significantly outperformed the full recommended dose of NPK in all studied yield attributes through both seasons. Whereas it recorded the highest mean values for the number of capsules per plant (44.99 and 44.59), seed yield per plant (16.84 and 18.89 g), and seed yield per feddan (363.94 and 408.17 kg), suggesting the possibility of using potassium humate to reduce mineral fertilizer inputs without compromising yield. The obtained results are in agreement with earlier studies on *Nigella sativa* L. that demonstrated significant improvements in seed yield traits (**Harb et al., 2011; Mohamed et al., 2020; Al-Fraihat et al., 2023 and El-Banna, 2024**).

Concerning foliar application treatments, all bio-stimulant treatments significantly increased yield attributes compared with the untreated control in both seasons (Table 4). Compost tea proved to be the most effective foliar treatment, resulting in the highest mean capsule number per plant (47.88 and 49.10), seed yield per plant (17.82 and 19.86 g), and seed yield per feddan (385.10 and 429.16 kg). This was followed by potassium silicate capsule number per plant (43.22 and 44.77), seed yield per plant (15.67 and 17.45 g), and seed yield per feddan (338.54 and 376.99 kg), seaweed extract capsule number per plant (38.99 and 40.33), seed yield per plant (13.91 and 15.24 g), and seed yield per feddan (300.52 and 329.34 kg) respectively, while sodium selenite recorded the least effective foliar treatment in enhancing capsule number per plant, seed yield per plant, and seed yield per feddan. The control treatment showed the lowest values. The superior effect of compost tea may be attributed to its rich content of nutrients, organic compounds, beneficial microorganisms, and growth-promoting substances that enhance flowering, seed set, and assimilate translocation. Several studies have reported the positive effects of compost tea on the seed yield of *Nigella sativa* L. is (**Ibrahim et al., 2019; Abdou et al., 2023; Al-Fraihat et al., 2023**). Moreover, the beneficial role of potassium silicate on *Nigella sativa* L. was highlighted by **El-Leithy et al. (2019)**. Based on previous studies, seaweed extracts significantly enhanced capsule number per plant, seed yield (**Mohamed et al., 2020; Danesh et al., 2020; Salama et al., 2023**). In addition, sodium selenite improved all seed yield attributes of *Nigella sativa* L. (**Tiji et al., 2021**).

The interaction effect was significant for all studied traits. The combination of 75% of the recommended NPK dose plus potassium humate, combined with foliar application treatments was more effective at enhancing growth and yield parameters of *Nigella sativa* L. plants than either 50% NPK plus potassium humate combined with foliar treatments or the full recommended dose of mineral fertilization alone. The best combination was 75% NPK plus potassium humate with a foliar application of compost tea, resulting in the maximum values of capsule number per plant, seed yield per plant and seed yield per feddan in both seasons, confirming a strong synergistic effect between soil-applied potassium humate and foliar bio-stimulants. These results emphasize that integrating reduced mineral fertilization with natural bio-stimulants is an effective strategy to improve the yield and sustainability of *Nigella sativa* L. production.

Table (4). Effect of soil amendment and foliar applications and their interaction on the yield attributes of *Nigella sativa* L. plants for the two different growing seasons

Fertilizer addition (A)	2021/2022 season						2022/2023 season					
	Foliar application (B)											
		Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)
Capsules number/plant												
100%NPK	30.33	33.33	35.66	41	45.66	37.19	32.33	33.66	37.33	42	46.66	38.39
75%NPK +Potassium Humate	38.33	41.66	45.33	48.33	51.33	44.99	40	34	46.33	49.66	53	44.59
50%NPK +Potassium Humate	28	34.33	36	40.33	46.66	37.06	29.33	35.66	37.33	42.66	47.66	38.52
Mean (B)	32.22	36.44	38.99	43.22	47.88		33.88	34.44	40.33	44.77	49.10	
LSD 5%	A= 1.02 B= 1.58 AB= 1.72						A=0.91 B= 0.78 AB=1.01					
Seed yield/plant (g)												
100%NPK	10.26	11.33	12.58	13.87	16.76	12.96	11.33	12.41	13.05	15.17	18.82	14.15
75%NPK +Potassium Humate	13.35	15.48	16.48	18.78	20.14	16.84	14.86	17.53	18.48	21.05	22.55	18.89
50%NPK +Potassium Humate	10.25	11.57	12.67	14.36	16.57	13.08	11.75	12.99	14.20	16.13	18.23	14.66
Mean (B)	11.28	12.79	13.91	15.67	17.82		12.64	14.31	15.24	17.45	19.86	
LSD 5%	A=1.71 B= 0.86 AB= 1.21						A= 0.99 B=1.28 AB=1.63					
Seed yield/Fed. (Kg)												
100%NPK	221.61	244.87	271.80	299.66	362.16	280.02	244.72	268.20	282.02	327.74	406.44	305.82
75%NPK +Potassium Humate	288.50	334.51	355.96	405.64	435.09	363.94	321.12	378.64	399.16	454.75	487.22	408.17
50%NPK +Potassium Humate	221.47	250.05	273.81	310.32	358.05	282.74	253.87	280.65	306.86	348.48	393.84	316.74
Mean (B)	243.86	276.47	300.52	338.54	385.10		273.23	309.16	329.34	376.99	429.16	
LSD 5%	A=27.07 B=18.76 AB=27.26						A= 21.02 B=27.14 AB=35.21					

3.3. Seed Fixed Oil Productivity and Composition

The data in Table 5 clearly revealed that the fixed oil production percentage, yield/plant (ml), and feddan (L) of *Nigella sativa* L. were affected by fertilizer addition, foliar application treatments, and their interaction during both growing seasons (2021/2022 and 2022/2023).

Oil percentage, yield per plant (ml), and feddan (L) increased significantly when moving from the 100% NPK recommended dose to 50% NPK plus potassium humate, and the highest values were achieved with the application of 75% NPK plus potassium humate in both growing seasons. Foliar application treatments, including sodium selenite, seaweed, potassium silicate, and compost tea, significantly improved oil percentage, yield per plant (ml), and yield per feddan (L) compared to the control across two growing seasons. Treated *Nigella sativa* L. plants with compost tea achieved the highest values for fixed oil percentage, fixed oil yield per plant, and per feddan, which were 33.12% and 34.08%, 5.95 ml and 6.82 ml, and 128.58 L and 147.42 L, respectively, in the two seasons, surpassing results from sodium selenite, seaweed, and potassium silicate foliar applications. The control treatment resulted in the lowest value. These results align with **Roussis et al. (2022)** and **El-Banna (2024)**, who reported that bio-foliar stimulants increased the fixed oil percentage.

The data in Table 5 clearly show that fixed oil percentage, fixed oil yield (ml) /plant and fixed oil yield (L) /feddan of *Nigella sativa* L. plants were significantly influenced by reduced 100% NPK recommended dose to 75% or 50% recommended dose of NPK fertilization treatments combined with foliar applications including sodium selenite, seaweed, potassium silicate, and compost tea in the two growing season. These results are consistent with those obtained by **Salama et al. (2023)**, who reported that NPK fertilization combined with humate and seaweed enhances the percentage and content of fixed oil. Studies have highlighted that the highest values of percentage and fixed oil content are influenced by a natural stimulant, compost tea, on *Nigella sativa* L., as shown by **Abdou et al. (2023)** and **Al-Fraihat et al. (2023)**.

All foliar applications led to a significant increase in fixed oil percentage, fixed oil yield (ml) /plant and fixed oil yield (L) /feddan under 75% or 50% recommended dose of NPK fertilization plus potassium humate compared to untreated plants 100% NPK. The highest values of fixed oil percentage, fixed oil yield (ml) /plant and fixed oil yield (L) /feddan were observed in the plants treated with 75% of the recommended NPK dose plus potassium humate combined with foliar applications, followed by 50% recommended dose of NPK fertilization plus potassium humate.

Concerning the best treatment, the combined application of 75% NPK plus potassium humate with compost tea foliar spray produced the highest values of fixed oil percentage and oil yield per plant and per feddan in both growing seasons, demonstrating a strong synergistic effect between soil and foliar nutrition. Results observed from **Hassan et al. (2023)** indicated that half of the recommendations for NPK fertilizer and bio-stimulants led to an increase in fixed oil percentage and yield.

Table (5). Effect of soil amendment and foliar applications and their interaction on the seed fixed oil productivity of *Nigella sativa* L. plants for the two different growing seasons

2021/2022 season							2022/2023 season					
Fertilizer addition (A)	Foliar application (B)											
	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)
Fixed oil %												
100%NPK	29.35	29.46	30.31	30.57	31.21	30.18	29.61	30.58	31.41	31.83	32.31	31.14
75%NPK +Potassium Humate	35.01	35.45	35.57	36.20	37.03	35.85	33.02	33.99	35.40	36.62	37.90	35.38
50%NPK +Potassium Humate	29.30	29.28	30.30	30.47	31.14	30.09	29.67	29.95	30.79	31.31	32.04	30.75
Mean (B)	31.22	31.39	32.06	32.41	33.12		30.76	31.50	32.53	33.25	34.08	
LSD 5%	A=0.23 B=0.27 AB= 0.67						A=0.46 B=0.38 AB=0.29					
Fixed oil (ml/ plant)												
100%NPK	3.01	3.43	3.70	4.24	5.23	3.92	3.35	3.79	4.09	4.83	6.08	4.42
75%NPK +Potassium Humate	4.67	5.50	5.84	6.80	7.46	6.05	5.05	6.10	6.20	7.70	8.54	6.71
50%NPK +Potassium Humate	3.00	3.50	3.71	4.38	5.16	3.95	3.48	4.00	4.21	5.05	5.84	4.51
Mean (B)	3.56	4.14	4.41	5.14	5.95		3.96	4.63	4.83	5.86	6.82	
LSD 5%	A= 0.62 B=0.30 AB= 2.09						A=0.54 B=0.45 AB=0.35					
Fixed oil (l/ fed.)												
100%NPK	65.10	74.22	80.08	91.61	113.06	84.81	72.52	82.02	88.52	104.34	131.40	95.76
75%NPK +Potassium Humate	101.02	118.99	126.25	146.89	161.15	130.86	109.16	131.80	134.03	166.48	184.65	145.22
50%NPK +Potassium Humate	64.85	75.79	80.16	94.61	111.53	85.38	75.32	86.41	90.99	109.10	126.23	97.61
Mean (B)	76.99	89.66	95.49	111.03	128.58		85.66	100.07	104.51	126.64	147.42	
LSD 5%	A=13.43 B=6.49 AB= 0.48						A=11.84 B=9.76 AB=7.57					

Table 6 shows the fatty acid composition in fixed oils extracted from black cumin seeds, influenced by the interaction between (A) mineral fertilization with NPK, whether applied alone or with potassium humate as a soil amendment, and (B) foliar application treatments. It revealed a total of 8 compounds, with the major fatty acids in *Nigella sativa* L. oil studied and expressed as the relative percentage of each fatty acid present in the sample. Specifically, the eight main fatty acids, which represented the total fatty acids, included saturated fatty acids (myristic acid C14:0, palmitic acid C16:0, stearic acid C18:0), polyunsaturated fatty acids (linoleic acid C18:2c, γ -linolenic acid C18:3, arachidic acid C20:0, eicosadienoic acid C20:0), and monounsaturated fatty acids (oleic acid C18:1c) **Khan and Afza (2016)** and **Hashem et al. (2022)**. These components ranged from 58.82% to 94.65% of the *Nigella sativa* L. seed oil. The primary fatty acids were linoleic and oleic acids, which were influenced by different fertilizer levels (100, 75, and 50% NPK) and various foliar treatments. At the 100% NPK recommended dose, foliar application of potassium silicate and compost tea notably increased polyunsaturated fatty acids, especially linoleic acid (30.52 and 30.78) and γ -linolenic acid (4.24 and 4.46), along with higher oleic acid content (27.08 and 27.25), respectively. While reducing the recommended dose to 50% NPK with potassium humate, a relative decline in all fatty acid contents was observed. However, foliar applications with compost tea and potassium silicate partially compensated for this reduction compared to the control. Under 75% NPK mixed with potassium humate, fatty acid contents were generally higher than those recorded at 100% NPK. When combined with foliar applications, compost tea and potassium silicate treatments produced the highest values of polyunsaturated and monounsaturated fatty acids, as well as the highest values of linoleic acid (36.24 and 36.11) and oleic acid content (31.46 and 31.46). The results align with **Al-Fraihat et al. (2023)** showed that compost tea was more effective to increase percentage and yield fixed oil.

These increases indicate heightened lipid biosynthesis and desaturation activity caused by these treatments, resulting in improved oil quality, and demonstrate their role in reducing the negative effects of decreased mineral fertilization. This treatment combination of NPK fertilization plus potassium humate with foliar application resulted in the highest overall fatty acid accumulation, especially for nutritionally important unsaturated fatty acids.

3.4. Minerals Content (N, P, and K⁺)

Different treatments of mineral fertilization with NPK, whether applied alone or combined with potassium humate as a soil amendment, and foliar application treatments and their interaction had a substantial impact on the percentages of N, P, and K in the dry seeds of *Nigella sativa* L. plants.

The data in Table 7 illustrated that the integration of 75% or 50% NPK and potassium humate increased fertilizer efficiency, enhancing N, P and K% compared with the 100% NPK control. Specifically, 75% NPK combined with potassium humate recorded the highest percentage of mineral content.

Regarding foliar applications, all treatments significantly increased the percentage of N, P, and K compared to the control. Compost tea resulted in the highest levels of nitrogen, phosphorus, and potassium, followed by potassium silicate and seaweed extract, while sodium selenite recorded the lowest increase in mineral content. Several studies have demonstrated the positive impact of natural foliar stimulants on the mineral content (N, P, and K⁺) of *Nigella sativa* L., as reported by **Ibrahim et al. (2019)**, **Abdou et al. (2023)**, **Hashem et al. (2022)**, and **Hafez et al. (2024)** on *Nigella sativa* L.

The interaction effect was significant for mineral content. The combination of 75% of the recommended NPK dose plus potassium humate, along with foliar application treatments, was more effective at increasing N, P, and K% in *Nigella sativa* L. plants than either 50% NPK plus potassium humate combined with foliar treatments or the full recommended dose of mineral fertilization alone. The combination of 75% NPK plus potassium humate with compost tea or potassium silicate resulted in the highest K% values, exceeding those obtained with the full NPK rate. This indicates that potassium humate improved soil potassium retention and root absorption, while foliar treatments enhanced potassium translocation within plant tissues.

Table (6). Effect of soil amendment and foliar applications and their interaction on the seed fixed oil composition of *Nigella sativa* L. plants

Fertilizer addition (A)	Foliar application (B)	Saturated fatty acids			Polyunsaturated fatty acids				Monounsaturated fatty acids	
		Myristic acid (C14:0)	Palmitic acid (C16:0)	Stearic acid (C18:0)	Linoleic acid (C18:2c)	γ - Linolenic acid (C18:3)	Arachidic acid (C20:0)	Eicosadienoic acid (C20:0)	Oleic acid (C18:1c)	Known
100%NPK	Control	-	6.24	0.74	28.35	-	-	-	23.49	58.82
	Sodium Selenite	0.27	9.78	1.80	29.01	-	-	-	25.16	66.02
	Seaweed extract	0.19	11.48	2.11	29.18	4.11	4.35	1.32	26.52	79.26
	Potassium Silicate	0.36	11.49	2.14	30.52	4.24	4.52	1.40	27.08	81.75
	Compost Tea	0.50	11.52	2.17	30.78	4.46	4.53	1.45	27.25	82.66
75%NPK +Potassium Humate	Control	0.38	11.19	2.23	34.44	-	4.53	1.51	28.31	82.59
	Sodium Selenite	0.41	11.43	2.26	35.25	4.22	4.58	1.55	29.50	89.20
	Seaweed extract	0.50	12.70	2.66	35.89	4.15	4.67	1.65	30.90	93.12
	Potassium Silicate	0.48	12.75	2.75	36.24	4.23	4.70	1.72	31.12	93.99
	Compost Tea	0.54	12.77	2.78	36.11	4.48	4.77	1.74	31.46	94.65
50%NPK +Potassium Humate	Control	0.26	11.62	2.14	31.56	4.08	4.22	1.40	24.15	79.43
	Sodium Selenite	0.36	11.80	0.43	32.16	4.16	4.39	1.47	26.67	81.44
	Seaweed extract	0.33	11.65	2.38	31.91	4.17	4.28	1.42	26.22	82.36
	Potassium Silicate	0.40	11.81	2.65	33.05	4.39	4.48	1.52	27.37	85.67
	Compost Tea	0.44	11.89	2.55	33.14	4.40	4.52	1.54	27.43	85.91

Table (7). Effect of soil amendment and foliar applications and their interaction on the mineral content (N, P, and K⁺) of *Nigella sativa* L. plants for the two different growing seasons

Fertilizers addition (A)	2021/2022 season						2022/2023 season					
	Foliar application (B)											
	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)	Control	Sodium Selenite	Seaweed extract	Potassium Silicate	Compost Tea	Mean (A)
N %												
100%NPK	2.91	3.04	3.24	3.37	3.39	3.19	2.75	3.17	3.37	3.43	3.70	3.28
75%NPK +Potassium Humate	3.06	3.14	3.32	3.40	3.45	3.27	3.19	3.42	3.56	3.73	3.87	3.55
50%NPK +Potassium Humate	2.97	3.08	3.29	3.31	3.42	3.21	3.04	3.19	3.45	3.53	3.78	3.39
Mean (B)	2.98	3.08	3.28	3.26	3.42		2.99	3.26	3.46	3.56	3.78	
LSD 5%	A=0.046 B=0.090 AB= 2.09						A=0.078 B=0.19 AB=0.15					
P%												
100%NPK	0.40	0.44	0.53	0.55	0.57	0.49	0.46	0.51	0.59	0.61	0.64	0.56
75%NPK +Potassium Humate	0.50	0.52	0.53	0.59	0.62	0.55	0.57	0.59	0.60	0.66	0.68	0.62
50%NPK +Potassium Humate	0.42	0.46	0.50	0.53	0.57	0.49	0.49	0.53	0.55	0.60	0.63	0.56
Mean (B)	0.44	0.47	0.52	0.55	0.58		0.50	0.54	0.58	0.62	0.65	
LSD 5%	A=0.018 B=0.019 AB= 3.63						A=0.019 B=0.017 AB=0.013					
K%												
100%NPK	1.63	1.72	1.76	1.81	1.84	1.75	1.71	1.76	1.79	1.84	1.88	1.79
75%NPK +Potassium Humate	1.77	1.81	1.85	1.87	1.91	1.84	1.81	1.85	1.89	1.91	1.94	1.88
50%NPK +Potassium Humate	1.69	1.72	1.78	1.82	1.85	1.77	1.74	1.77	1.82	1.86	1.89	1.81
Mean (B)	1.69	1.75	1.79	1.83	1.86		1.75	1.79	1.83	1.87	1.90	
LSD 5%	A=0.015 B=0.016 AB= 2.56						A=0.011 B=0.017 AB=0.013					

4. Conclusions

From the above results, it can be inferred that reducing the recommended NPK rate to 75% and supplementing it with potassium humate and foliar applications significantly enhanced morphological characteristics, seed productivity, seed oil yield, fatty acid composition and N, P, and K contents of *Nigella sativa* L. during two growing seasons. Among fertilizer treatments, the application of 75% NPK combined with potassium humate and, as for foliar applications, compost tea followed by potassium silicate produced superior results across all studied parameters compared with other treatments.

The combination of 75% NPK plus potassium humate with compost tea foliar application consistently produced the highest morphological characteristics, seed productivity, seed oil yield, fatty acid composition, and N, P, and K contents.

These findings confirm that combining natural soil amendments with eco-friendly foliar stimulants can be recommended as a sustainable fertilization strategy that reduces the use of mineral fertilizers while maintaining high growth and productivity in *Nigella sativa* L.

References

Abdou, M. N.; Mohamed H. H.; AL-Huqail, A.A.; Elkelish, A.; Ali, A. S.; Sayed, B.; Alharbi, M.; Mahdy, A.A.H. and Abou-Sreea, B. I. A. (2023). Compost improving morphophysiological and biochemical traits, seed yield, and oil quality of *nigella sativa* l. under drought stress. *Agronomy*, 13 (4): 1-19. <https://doi.org/10.3390/agronomy13041147>.

Abou Basha, D.M.; Hellal, F. and El Sayed, S. (2021). The combined effect of potassium humate and bio-fertilizers on maize productivity and quality under water stress conditions. *Science Archives*, 2 (3): 162-170.. <http://dx.doi.org/10.47587/SA.2021.2302>.

Abu-Zinada, I. A. and Sekh-Eleid, K. S. (2015). Humic acid to decrease fertilization rate on potato (*Solanum tuberosum* L.). *American J. Agric.*, 3(5): 234– 238. <https://doi.org/10.11648/j.ajaf.20150305.20>.

Ahmad, A.; Husain, A.; Mujeeb, M.; Khan, S.; Najmi, A.; Siddique, N. A.; Damanhouri, Z. A. and Anwar, F. (2013). A review on therapeutic potential of *Nigella sativa*: A miracle herb. *Asian Pacific Journal of Tropical Biomedicine*, 3(5): 337-352.

Al-Fraihat, H.; Zatimeh, A. A.; Alhrout, H. H.; Al-Dalain, S. Y. and Mostipan, M. (2023). The interaction impact of compost and bio stimulants on growth, yield and oil content of black cumin (*Nigella sativa* L.) plants. *Brazilian Journal of Biology*, 83 (5): 1-10. <https://doi.org/10.1590/1519-6984.272957>.

Ali, O.; Ramsubhag, A. and Jayaraman, J. (2021). Bio stimulant properties of seaweed extracts in plants: implications towards sustainable crop production. *Plants*. 10(3) 1-27, 531; <https://doi.org/10.3390/plants10030531>.

AOAC (1990). Official Methods of Analysis.15th Ed. Association of Official Analytical Chemists, Inc., Virginia, USA.

AOAC International. Official Methods of Analysis, 18th ed. (2007). The Association of Official Analytical Chemists: Gaithersburg, MD, USA.

Atta, M. B. (2003). Some characteristics of nigella (*Nigella sativa* L.) seed cultivated in Egypt and its lipid profile. *Food Chemistry*, 83(1): 63–68.

Awaad, M.S.; El-Shazly, M.A. and Deshesh, T.H. (2020). Effect of potassium humate and phosphorus fertilization on faba bean plants of yield and its content of nutrients. *Menoufia J. Soil Sci.*, 5 (7): 161 - 171 <https://mjss.journals.ekb.eg/>.

Black C. A. (1965). Method of Soil Analysis part 2. Chemical and microbiological properties, 9: 1387-1388. <https://www.cabidigitallibrary.org/doi/full/10.5555/19841981415>.

Boghdady, M. S.; Desoky, E. M.; Azoz, S. N. and Nassar, M.A.D. (2017). Effect of selenium on growth, physiological aspects and productivity of faba bean (*Vicia faba* L.). Egypt. J. Agron., 39 (1): 83-97.

Cheng, H.; Chang, S.; Shi, X.; Chen, Y.; Cong, X.; Cheng, S. and Li, L. (2024). Molecular mechanisms of the effects of sodium selenite on the growth, nutritional quality, and species of organic selenium in dandelions. Horticulturae, 10 (3): 1-23. <https://doi.org/10.3390/horticulturae10030209>.

Cottenie, A.; Verloo, M.; Kiekens, L. and Canerlynck, R. (1982). Chemical Analysis of Plants and Soil. Laboratory of Analysis and Agrochemistry. State Univ. Ghent, Belgium.

Danesh, N.; Ansari, S.; Golmakani, M. T. and Keramat, M. (2021). Effect of seaweed extracts on improving the oxidation kinetic of black cumin (*Nigella sativa*) oil. Journal of Applied Phycology, 33:629–637.

El-Banna, Y.H. (2024). Improvement in Productivity of Black Cumin Plants under Irrigation with Magnetized Water and some Foliar Spray Stimulants. J. of Plant Production, Mansoura Univ., 15 (2):61 – 69.

El-Leithy, S.I. A.; Abdallah, A.S.S. and Ali, M.A.M. (2019). Effect of soil application with nitrogen levels and potassium silicate foliar spray on growth and yield of black cumin (*Nigella Sativa* L.). Sinai Journal of Applied Sciences (, 8 (2): 185-198.

Gomez, K. and Gomez, A. (1984). Statistical Procedures. Agric. Res., 2nd Ed. John Wiley and Sons, Inc, New York.

Gong, R.; Ai, C.; Zhang, B. and Cheng, X. (2018). Effect of selenite on organic selenium speciation and selenium bioaccessibility in rice grains of two Se-enriched rice cultivars. Food Chem. 264;443–448.

Gonzalez-Hernandez, I.A.; Perez-Sanchez, R.; Javier Plaza, J. and Morales-Corts, R.M. (2022). Compost tea as a sustainable alternative to promote plant growth and resistance against *Rhizoctonia solani* in potato plants. Scientia Horticulturae, 300: 1-9.

Hafez, Y. A. M.; Kenawy, A. G. M. and Shehata, M.A. (2024). The effect of microbial inoculants, humic acid and phosphorus on the production and quality characteristics of *Nigella sativa* plants. J. of Plant Production, Mansoura Univ. 15 (7): 409 - 415.

Harb, E. M. Z., A.M. Ghallab and S.H. D. Soliman (2011). Effect of mycorrhizae, azotobacter and organic manure on the growth, seed yield and oil content of *Nigella sativa* L. plants grown under two levels of chemical fertilizers (NPK). Bull. Fac. Agric., Cairo Univ., 62: 173-182.

Hashem, A. E. H.; Abd El-Aleem, H. W. and Khater, M.R. (2022). Effect of Some Safe Agricultural Treatments on Growth and productivity of *Nigella Sativa* L. plants under south sinai conditions. Egyptian J. Desert Res., 72 (2): 315-334.

Hassan, E. A.; El-Gohary, A.; Ali, M. A. M. and Abd El-Moneim, M. A. (2023). Effect of Fertilization and Biostimulants on Growth and Productivity of Black Cumin (*Nigella Sativa* L.) Plants. New Valley Journal of Agricultural Science, 3 (7): 740-757.

Hassan, H.; Suleiman, S. and Dais, M. (2024). Effect of potassium humate spray on some biochemical characteristics in potato leaves *Solanum tuberosum* under water stress conditions. Baghdad Science Journal. 21(5): 1483-1493.

Ibrahim, A. K. H.; Khater, M. R. R. and Hegab, H.R. (2019). Evaluate the effect of compost tea and some chelated micronutrients forms on black cumin productivity. A Springer Nature Applied Sciences 28 (1): 1-11. | <https://doi.org/10.1007/s42452-018-0031-x>.

Idrees, M.; Anjum, M.A. and Mirza, J. I. (2018). Potassium humate and NPK application rates influence yield and economic performance of potato crops grown in clayey loam soils. Soil Environ, 37 (1): 53-61.

Jackson, M. (1967). Soil Chemical analysis, Printice Hall of India Pvt. Ltd. New Delhi, pp. 25-28.

Kant, K.; Anwer, M.M.; Meena, S.R. and Meena, R.S. (2010). Advanced Production Technology of Nigella, 1st Edition, Ajmer.

Khan, M. A. and Afza, M. (2016). Chemical composition of *Nigella sativa* L. inn: Part 2 Recent advances. *Inflammopharmacol*, 24:67–79. DOI 10.1007/s10787-016-0262-7.

Mahdi, A. H.; Badawy, S.A.; Abdel Latef, A. H.; El Hosary, A.A.; Abd El Razek, U.A. and Taha, R. S. (2021). Integrated effects of potassium humate and planting density on growth, physiological traits and yield of Vicia faba L. grown in newly reclaimed soil. *Agronomy*, 11: 1-12. <https://doi.org/10.3390/agronomy11030461>.

Massoud, Y.H.; Farag, A. A.; El-Gamal, M. A. S. and El-Nabawy, A. E. S. (2024). Effect of different drip irrigation rates and potassium silicate spray on growth and essential oil production of french basil, *J. of Plant Production*, Mansoura Univ. 3 (2): 1-15.

Mohamed, N. H.; Hassan, E. A.; Hamad, El. H. and Khater, M. R. (2020). Response of black cumin (*Nigella sativa* L.) plants to the addition of natural fertilizers and the inoculation by bacteria mix and seaweed liquid extract. *Archives of Agriculture Sciences Journal*. Volume 3, Issue 2, Pages 1–15.

Mohammed, M.H.; Abd-Alrahman, H. A.; Abdel-Kader, H.H. and Aboud, F.S. (2021). Effect of potassium humate and levels of potassium fertilization on growth, yield and nutritional status of tomato plants. *J. Hort. Sci. & Ornamen Plants*, 13 (2): 124-133.

Nasir, N.B.; Chesti, M. H.; Bhat Auyoub, M.; Aamir, M.H.; Owais, B.; Tauseef, B.A.; Mohd, S.; Zakir, A.; Audil, G. and Ayoub Liyaqat, A. (2022). Bio stimulants towards Soil health improvement: A review. *Agricultural Reviews.*, 6(1): 70-77.

Nassar, K. E. M.; EL-Shaboury, H. A. and EL-Sonbaty, A. E. (2021). Influence of some potassium humate application methods and mineral fertilization of nitrogen and phosphorus on soybean yield and quality. *Menoufia Journal of Soil Science*, 6(4): 133-145.

Nothstein, A.K.; Eiche, E.; Riemann, M.; Nick, P.; Winkel, L.H.E.; Göttlicher, J.; Steininger, R.; Brendel, R.; Von Brasch, M. and Konrad, G. (2016). Tracking se assimilation and speciation through the rice plant–nutrient competition, toxicity and distribution. *PLoS. ONE*, 11 (4): 1-15.

Page, A. L.; Miller, R. H.; Keeney, D. R.; Baker, D. E.; Ellis R. and J. D. Rhoades (1982). Methods of soil analysis. Eds (No. 631.41 MET 9-2 1982).

Randhawa, M.A. and Alenazi, S. A. (2016). Neuropsychiatric effect of *Nigella sativa* L. (black seed) - a review. *Altern. Integr. Med.*, 5 (1): 1-8.

Roussis, I.; Kakabouki, I.; Mavroeidis, A.; Triantafyllidis, V.; Zotos, A.; Kosma, C. and Bilalis, D. (2022). Seed fixed oil content, oil yield, and fatty acids profile of *Nigella sativa* L. in response to fertilization and plant density. *Notulae Botanicae Horti Agrobotanici Cluj-Napoca*, 50 (2): 12768-12768.

Salama, M. M. A.; Mansour, J. A.; Mahmoud, A.A. and Hassan, E.A. (2023). Response of *Nigella sativa* L. Plants to Humic acid and Seaweed extract treatments. *International Journal of Chemical and Biochemical Sciences*, 24(12): 828-837.

Shaban, H.; Fazeli-Nasab, B.; Alahyari, H.; Alizadeh, G. and Shahpesandi, S. (2015). An overview of the benefits of compost tea on plant and soil structure *Advances in Bioresearch*, 61 (6):154-158.

Tiji, S.; Lakrat, M.; Rokni, Y.; Mejdoubi, E.; Hano, C.; Addi, M.; Asehraou, A. and Mimouni, M. (2022). Characterization and antimicrobial activity of *Nigella sativa* L. extracts encapsulated in hydroxyapatite sodium silicate glass composite. *antibiotics*, 11: 1-14. <https://doi.org/10.3390/antibiotics11020170>.

Valencia, R. T.; Acosta, L.S.; Hernández, M. F.; Rangel, P.P.; Robles, M. G.; Cruz, R. C.; and Vázquez, C. V. (2018). Effect of seaweed aqueous extracts and compost on vegetative growth, yield, and nutraceutical quality of cucumber (*Cucumis sativus* L.) fruit. *Agronomy*, 8(11):1-13.; <https://doi.org/10.3390/agronomy8110264>.

Waraich, E.A.; Ahmad, R.; Saifullah, A. and Ehsanullah, M. Y. (2011). Role of mineral nutrition in alleviation of drought stress in plants. Australian J. Crop Sci., 5(6): 764-777.

Xu, Y. and Li, Y. (2023). Effects of sodium selenite on the rhizosphere environment, growth, and physiological traits of oilseed rape (*Brassica napus* L.). Agronomy, 13: 1-15. <https://doi.org/10.3390/agronomy13102508>.

الملخص العربي

مؤخراً، أصبحت هناك توجهات عالمية متزايدة للحد من استخدام الأسمدة الكيميائية في الزراعة لما لها من آثار سلبية على جودة التربة وصحة البيئة، بالإضافة إلى ارتفاع تكاليف الإنتاج. لذلك هدفت هذه الدراسة، التي أجريت خلال موسم ٢٠٢١/٢٠٢٢ و ٢٠٢٣/٢٠٢٤، إلى تقييم استجابة نبات حبة البركة (*Nigella sativa* L.) لخفض التسميد المعدني مع إضافة هيومات البوتاسيوم كمحسن أرضي، إلى جانب استخدام بعض المنشطات الطبيعية بالرش الورقي. اشتملت معاملات القطع الرئيسية على ثلاثة مستويات من التسميد: ١٠٠٪ من الجرعة الموصى بها من NPK، و ٧٥٪ NPK + هيومات البوتاسيوم بمعدل ٢ كجم/فدان، و ٥٠٪ NPK + هيومات البوتاسيوم بمعدل ٢ كجم/فدان. أما معاملات القطع المنشقة فقد تضمنت خمسة معاملات رش ورقي: بدون رش، مستخلص الطحالب البحرية (٥٠ مل/لتر)، شاي الكمبوست (٢٠ لتر/فدان)، سيلينات الصوديوم (٨ جم/لتر)، و سيليليكات البوتاسيوم (٤ مل/لتر). أظهرت النتائج إمكانية خفض الأسمدة المعدنية إلى ٧٥٪ وحتى ٥٠٪ من الجرعة الموصى بها عند استخدامها مع هيومات البوتاسيوم دون التأثير السلبي على أداء النبات. كما أدت جميع معاملات الرش الورقي إلى تحسين معنوي في الصفات المدروسة، وكان شاي الكمبوست هو الأكثر كفاءة. وحقق التداخل بين معاملة ٧٥٪ NPK + هيومات البوتاسيوم مع الرش الورقي بشاي الكمبوست أفضل النتائج من حيث النمو الخضري، ومحصول البذور، وإنجابية الزيت الثابت خلال الموسمين. وتأكد هذه النتائج أن دمج المحسنات الأرضية الطبيعية مع المنشطات الورقية الصديقة للبيئة يُعد استراتيجية فعالة لقليل الاعتماد على الأسمدة المعدنية مع الحفاظ على إنتاجية عالية لنبات حبة البركة.